Responsive image
博碩士論文 etd-0621114-175509 詳細資訊
Title page for etd-0621114-175509
論文名稱
Title
利用一對NxN可循環式的陣列波導光柵實現多組2x2光交換連結器之研究
Realization of multiple 2x2 OXCs based on one pair of NxN cyclic AWGs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-15
繳交日期
Date of Submission
2014-07-21
關鍵字
Keywords
光交換連結器
OXC
統計
Statistics
本論文已被瀏覽 5630 次,被下載 483
The thesis/dissertation has been browsed 5630 times, has been downloaded 483 times.
中文摘要
隨著下世代網路(Next Generation Network, NGN)[1-2] 需整合傳統電信網 路(Public Switch Telephone Network, PSTN)、無線網路(Wireless Network)與網際網路(Internet)於單一網路上成為全網際網路協定(Internet protocol, IP)網路,使得網路頻寬的需求愈來愈大,光通訊的高密度分波多工(Dense wavelength-division multiplexing, DWDM)系統就是其中一種可提供有效成本效益且有更多優點的技術之一。在此情況下,控制平面(control plane)技術能夠動態的管理流量請求及平衡在各光纖鏈路、波長及交換節點的網路負載,使得這些元件的節點不會被過度使用而造成流量壅塞的可能。在一般傳統控制平面仍使用單一輸入之光波長路由裝置,本論文所提出可多重輸入之光波長路由裝置可以提供控制平面更為彈性的網路需求及較低的建置成本。
在通用多重協定標籤交換 (Generalized Multiprotocol Label Switching, GMPLS) 網路中,其主要利用高密度分波多工系統技術來提供高容量、更彈性、更可靠且更明確性的多波長通道光網路,而這些重要的機制中大部分都是利用光信號塞取多工器(optical add/drop multiplexer, OADM)和光交換連結器(optical cross connect, OXC)。
本論文研究以循環式陣列波導光柵(Array waveguide grating, AWG)和布雷格光纖光柵(fiber Bragg grating, FBG)為基礎架構,並且加入光循環器,此種架構擁有低串擾和不隨偏振擾動的特點。在此論文中,提出了利用一對NxN可循環式的陣列波導光柵(AWG)實現多組2x2的光交換連結器(OXC),並且分析此架構的效能,實現 N/2 組的波長訊號輸入及組態這些波長訊號的路由,相對於先前技術不但成本低且網路管理彈性更大。
Abstract
In response to the development of a next-generation networking (NGN), integrating Public Switch Telephone Network (PSTN), Wireless Network and Internet on the single network using the Internet protocol (IP) is needed. The requirement of the network bandwidth becomes larger. Dense wavelength-division multiplexing (DWDM) of the optical communication is an important technology which can provide many benefits. In this case, control plane technology should dynamically manage the traffic flow and balance the network load so that the nodes will not be used excessively or caused traffic jams.
In the generalized multi-protocol label switching (GMPLS) network, the main advantages of the DWDM system technology are to provide high capacity, more flexibility, high reliability, and clarity through the multi-wavelength channels for the optical network. These important features can be realized by the optical add-drop multiplexer (OADM) and the optical cross connect (OXC).
In this thesis, the multiple 2x2 OXCs based on one pair of NxN cyclic AWGs is proposed and we analyze the performances of the system experimentally. We realize inputting N/2 sets of wavelength signals and routing them. Compared to the previous technology, we increase the flexibility of the Internet requirement and lower the equipment cost.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
圖目錄、表目錄 vii

1 Introduction 1
1.1 Background of Next-Generation Optical Internet. . . . . . . . . . . . . . . . . 1
1.2 The GMPLS Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

2 Overviews of OADM, ROADM and OXC systems 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Technologies of the systems . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Function of the proposed OXC . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3 Experimental Study of proposed OXC 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Static setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.2.2 Dynamic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Experimental Results and Discussions . . . . . . . . . . . . . . . . . . . . . . .34
3.3.1 Homowavelength crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Static Performance . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Dynamic performance . . . . . . . . . . . . . . . . . . . . 43
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

4 Conclusion 54

Acronyms ix
參考文獻 References
[1]. FT. An; KS. Kim; D. Gutierrez, et al. “SUCCESS: A next-generation hybrid WDM/TDM
optical access network architecture,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 22,
No. 11, pp. 2557-2569, 2004.
[2]. LG. Kazovsky; WT. Shaw; D. Gutierrez, et al. “Next-generation optical access networks,”
JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 25, No. 11, pp. 3428-3442, 2007.
[3]. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons Inc.,
1991.
[4]. D. Katz, K. Kompella, and D. Yeung. “Traffic engineering (TE) extensions to OSPF
version2,” IETF RFC 3630, SEPT. 2003.
[5]. K. Kompella and Y. Rekhter, “Label switched paths (LSP) hierarchy with generalized multi-
protocol label switching (GMPLS) traffic engineering (TE),” IETF RFC 4206, OCT. 2005.
[6]. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC
3945, OCT. 2004.
[7]. R. Sabella; M. Settembre; G. Oriolo , et al. “A multilayer solution for path provisioning in
new-generation optical/MPLS networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol.
21, No. 5, pp. 1141-1155, MAY 2003.
[8]. TD. Nadeau; H. Rakotoranto “GMPLS operations and management: Today's challenges and
solutions for tomorrow,” IEEE COMMUNICATIONS MAGAZINE Vol. 43, No, 7. pp. 68-74,
JUL 2005.
[9]. A. Elwalid; D. Mitra; I. Saniee, et al. “Routing and protection in GMPLS networks: From
shortest paths to optimized designs,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21,
No. 11, pp. 2828-2838, NOV 2003.
[10]. A. Giorgetti; N. Sambo; I. Cerutti, et al. “Label Preference Schemes for Lightpath
Provisioning and Restoration in Distributed GMPLS Networks,” JOURNAL OF
LIGHTWAVE TECHNOLOGY, Vol. 27, No. 5-8, pp. 688-697, 2009.
[11]. R. Munoz, R. V. M Rivera, J. Sorribes, and G. J. Giralt, “Experimental GMPLS-Based
Provisioning,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 23, No. 10, pp. 3034-
3045, OCT. 2005.
[12]. K. Iwatsuki, Jun-ichi Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks
based on WDM technologies,” IEEE J. Lightwave Technol., vol. 22, no 11, pp. 1623-1630,
Nov. 2004.
[13]. M. Sharma, H. Ibe, and T. Ozeki, “WDM ring network using a centralized multiwavelength
light source and add-drop multiplexing filters,” IEEE J. Lightwave Technol., vol. 15, no 6, pp.
917-929, June. 1997.
[14]. J.-K.Rhee, I. Tomkos, and Ming-Jun Li “A broadcast-and-select OADM optical
network with dedicated optical-channel protection,” IEEE J. Lightwave Technol.,
vol. 21, no 1, pp. 25-31, Jan. 2003.
[15]. P. Arijs, R. Meersman, W. Van Parys, E. Iannone, A. Tanzi, M. Pierpaoli, F.
Bentivoglio, and P. Demeester, “Architecture and design of optical channel
protected ring networks,” IEEE J. Lightwave Technol., vol. 19, no 1, pp. 11-22,
Jan. 2001.
[16]. T.-H. Wu and W.I. Way, “A novel passive protected SONET bidirectional self-healing ring
architecture,” IEEE J. Lightwave Technol., vol. 10, no 9, pp. 1314-1322, Step. 1992.
[1]. K.O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J.
Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[2]. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294,
Aug. 1997.
[3]. S.D. Dods and R.S. Tucker, “A comparison of the homodyne crosstalk characteristics of
optical add-drop multiplexers,” IEEE J. Lightwave Technol., vol. 19, no. 12, pp. 1829-1838,
Dec. 2001.
[4]. R.J.S. Pedersen and B.F.Jorgensen, “Impact of coherent crosstalk on usable bandwidth of
a grating-MZI based OADM,” IEEE Photonics. Technol. Lett., vol. 10, no. 4, pp. 558-560,
April 1998.
[5]. Y.K. Chen, C.H. Chang, Y.L. Yang, I.Y. Kuo, T.C. Liang, “Mach–Zehnder fiber-grating-
based fixed and recon-figurable multichannel optical add-drop multiplexers for DWDM
networks,” Opt. Commun. (1999) 245–262.
[6]. C. Pu, L.Y. Lin, E.L. Goldstein, R.W. Tkach, Client-configurable eight-channel optical
add/drop multiplexer using micromachining technology, IEEE Photon. Technol. Lett. 12
(2000) 1665–1667.
[7]. H. Okayama, Y. Ozeki, and T. Kunii, “Dynamic wavelength selective add/drop node
comprising tunable gratings,” Electronics Letters, vol. 33, no. 10, pp. 881–882, May 1997.
[8]. K.A. McGreer, “Arrayed waveguide gratings for wavelength routing,” IEEE Commun. Mag.,
vol. 36, no. 12, pp. 62-68, Dec. 1998.
[9]. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,”
IEEE Photon Technol. Letter, vol. 3, pp. 812-815, 1991.
[10]. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on
silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
[11]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of
arrayed-waveguide N×N wavelength multiplexer,” IEEE J. Lightwave Technol.,
vol. 13, no. 3, pp. 447-455, March 1995.
[12]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an
Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” IEEE J.
Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
[13]. C. M. Tsai, H. Taga, C. H. Yang, Y. L. Lo, and T. C. Liang, “Demonstration of a ROADM
Using Cyclic AWGs,” IEEE J. Lightwave Technol., vol. 29. No. 18, pp. 2780 - 2784, Sept.
2011.
[14]. Tsair-Chun Liang, Cheng-Mu Tsai and Bo-Cong Wu, “A wavelength routing device by using
cyclic AWGs and tunable FBGs,” Optical Fiber Technology, accepted.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code