Responsive image
博碩士論文 etd-0621114-180856 詳細資訊
Title page for etd-0621114-180856
論文名稱
Title
以PU網狀泡綿生物濾床處理民生污水之效能探討
Performance evaluation treatment of domestic wastewater using PU-net sponge mediated biofilter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-18
繳交日期
Date of Submission
2014-07-25
關鍵字
Keywords
總有機碳、氨氮、民生污水、懸浮固體物、生物濾床、硝化作用
nitrifications, SS, domestic wastewater, ammonia nitrogen, TOC, biological filter
統計
Statistics
本論文已被瀏覽 5657 次,被下載 991
The thesis/dissertation has been browsed 5657 times, has been downloaded 991 times.
中文摘要
國內畜牧廢水或家庭污水排入天然水域中,致使水體環境遭受水污染,其中以氨氮污染物最為重要,其次為溶解性有機碳、懸浮性固體物、氨化物、硝酸鹽氮及亞酸鹽氮等,這些污染物若未審慎處理,容易造成河川、湖泊污染優養化。
本研究在一座民生污水廠現場設置一個生物性濾床系統處理民生污水,生物濾床填入PU網狀泡綿為擔體,目的為探討實際民生污水中氨氮及有機物(以TOC、DOC、COD表示)的去除效率及操作條件之影響。由實驗結果顯示,當生物濾床操作於水溫在28-32℃、pH值在7.0-8.0之間、及溶氧在3 mg/L以上,可成功保持生物濾床系統於好氧硝化狀態。
隨著空床停留時間(EBCT)的增加,生物濾床之去除率也隨之上升,EBCT為 2小時、4小時和6小時生物濾床之TOC去除效率分別為46.76%、51.45%和56.52%;DOC去除效率分別為60.41%、68.17%和87.9%; COD去除效率分別為73.6%、78.3%和82.4%。而氨氮轉化率分別為98.6%、97.0%和97.2%,在短時間內就有明顯的轉化效果,因此看不出EBCT對於氨氮的轉化效率是否有相關性。
Abstract
Due to the effluent of domestic or sewer wastewater flowed into natural water body; it is caused water pollution seriously on quality of water body. There are commonly found primary pollutants is ammonia-nitrogen , secondly are dissolved organic carbon(TOC), suspended solids(SS), nitrogen compounds, nitrate, and nitrite. Eutrophication usually is happened on river and lake if these compounds are not effectively treated.
In this work, we set a biological filter system (including PU-net sponge) in a domestic wastewater plant to investigate removal and operation effects of TOC, DOC, and COD in wastewater. The experimental parameters comprised water temperature at 28-32 o C, pH at 7-8, and dissolved oxygen concentration over 3 mg/L for assuring nitrification in this treatment system.
The removal of biological filter was increased with increased EBCT. When EBCT were at 2, 4, and 6 hr, removal of TOC were achieved as about 47%, 51%, and 57% ; removal of DOC were about 60%, 68%, and 88%; removal of COD were about 74%, 78%, and 82%; and removal of ammonia-nitrogen were about 99%, 97% ,and 97% respectively. For the tests were conducted in short periods, thus relation between EBCT and conversion of ammonia-nitrogen is not obviously found in this work.
目次 Table of Contents
摘 要 i
目 錄 iv
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1水中氮系列來源及生物除氮 3
2-1-1氮循環 3
2-1-2生物除氮原理 4
2-1-3硝化作用 5
2-1-4影響硝化作用之因素 6
2-2水中有機物種類及處理方法 10
2-2-1有機物分類及性質 10
2-2-2有機物去除方法 17
2-2-3民生污水有機物性質與來源 19
2.3生物曝氣法 20
2.4 國內、外研究現況及文獻探討 22
2.4-1 國內廢水生物處理發展現況 23
2-4-2 國內生物性泡綿水處理之研究現況 26
2-4-3 國外應用經驗 29
2-5 SUVA值 31
2-6 卡爾森指數 32
第三章 實驗設備與方法 33
3-1 研究流程之規劃 33
3-2 污水廠介紹 34
3-3 模組系統之建立 36
3-4水質項目與分析方法 39
3-4-1水溫與氫離子濃度指數 41
3-4-2 氧化還原電位 41
3-4-3 總溶解性固體物 41
3-4-4 透明度 42
3-4-5 總有機碳 42
3-4-6 溶解性有機碳 42
3-4-7 溶氧量 43
3-4-8 氨氮 43
3-4-9化學需氧量 43
3-4-10 亞硝酸鹽 43
3-4-11 硝酸鹽 44
3-4-12 總氮 44
3-4-13 鹼度 44
3-4-14 葉綠素a 44
3-4-15 總磷 45
3-4-16 卡爾森指數 45
第四章 結果與討論 46
4-1 模組系統入流水、出水之水質監測 46
4-1-1 溫度控制 46
4-1-2 pH值變化 47
4-1-3 溶氧量變化 49
4-1-4 氧化還原電位變化 50
4-2 模組處理效率 51
4-2-1 氨氮(NH3-N)轉化率 51
4-2-2 亞硝酸鹽(NO2-N)、硝酸鹽(NO3-N)之變化 54
4-2-3 總氮與有機氮 56
4-2-4 總有機碳(TOC)去除率 58
4-2-5 溶解性有機碳(DOC)去除率 61
4-2-6 化學需氧量(COD)去除率 64
4-2-7 總懸浮固體(SS)去除率 67
4-3 入流水、出水SUVA變化 69
4-4 入流水、出水卡爾森指數變化及比較表 70
第五章 結論與建議 73
5-1 結論 73
5-2 建議 74
參考文獻 75
參考文獻 References
Barber, L.B., Leenheer, J.A., Noyes, T.I. and Stiles, E.A., (2001). “Nature and Transformation of Dissolved Organic Matter in Treatment Wetlands.” Environ. Sci. Technol, 35:4805-4816.
Chien, T. Y. C., Chen, J. W. J.and Pitts, W. E.(1997). “Pilot Plant Demonstrates Biological Filtration for Ammonia Removal in Water Treatment. ” Proc.AWWA WQTC,(CD-Rom)
Choi, C., Lee, J. Lee, K. and Kim, M. (2008). “The effects on operations condition of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR). ” Bioresource Technology 99, 5397-5401.
Christman, R.F., Norwood, D.L., Seo, Y. and Frimmel, F.H. (1989). “Oxidative Degradation of Humic Substances from Freshwater Environment.” John Wiley & Sons, Chichester.
Chui, P. C., Terashima, Y., Tay, J. H. and Ozaki, H. (1996). “Performance of a partly aerated biofilter in the removal of nitrogen.” Wat. Sci.Tech., 34(1-2), 187-194.
Ciudad, G., Rubilar, O., Muñoz, P., Ruiz, G., Chamy, R., Vergara, C. and Jeison, D. (2005). “ Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. ” Process Biochemistry 40, 1715-1719.
Dong, B. and S. Jiang, (2009). “Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times. ” Desalination, 243, pp. 240–250.
Edwards, G.A. and Amirtharajah, A. (1985). “Removal Color Caused by Humic Acids”Journal of American Water Works Association, 77(3):50-57.
Edzwald, J. K. and J. E. Tobiason, (1999) “Enhanced coagulation: Us requirements and a broader view.” Water Science and Technology, 40, 63-70 .
Ersu, C.B., Ong, S.K., Arslankaya, E. and Lee, Y.W. (2010) . “Impact of solids residence time on biological nutrient removal performance of membrane bioreactor. ” Water research 44, 3192-3202.
Gerardi, Michael H. (2002). “Nitrification and denitrification in the activated sludge process. ” John Wiley & Sons, Inc.
Guo, X., Kim, J.H., Behera, S.K. and Park, H.S. (2008). “ Influence of dissovled oxygen concentration and aeration time on accumulation in partial nitrification process. ” International journal of Environment Science and Technology 5, 527-534.
He, S.B., Xue, G. and Wang, B.Z. (2009). “Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. ” Journal of Hazardous Materials 168, 704-710.
Huysman, P., Meenen, P. V., Assche, P. V. and Verstraete, W.(1983). “Factors Affecting the Colonization of Non Porous and Porous Packing Materials in Model Upflow Methane Reactors. ” Biotechnol. Lett. 5:9:643.
Kim, D., Kim, K.Y., Ryu, H.D., Min, K.K. and Lee, S.I. (2009). “Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. ” Bioresource Technology 100, 3180-3184.
Komorowska-Kaufman, M., Majcherek, H. and Klaczynski, E. (2006). “Factors affecting the biological nitrogen removal from wastewater.” Process Biochemistry 41, 1015-1021.
Krasner, S.W., Croue, J.P., Buffle, J. and Perdue, E.M. (1996). “Three Approaches for Characterizing NOM.” Journal of American Water Works Association, 88:66-79.
Lee, J.K., Choi, C.K., Lee, K.H. and Yim, S.B. (2008). “Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis 47 as a function of sludge retention time in a sequencing batch reactor system. ” Bioresource Technology 99, 7788-7796.
Munir, C. (1998). “Ultrafiltration and Microfiltration Handbook.” Technomic, Lancaster.
Ng, H.Y., Tan, T.W., Ong, S.L., Toh, C.A. and Loo, Z.P. (2006). “Effects of solid retention time on the performance of submerged anoxic/oxic membrane bioreactor. ” Water Science and Technology 53, 7-13.
Rittmann, B.E. and McCarty, P.L. (2001). “ Environmental biotechnology: principles and applications. ” (First edition) McGraw-Hill.
Ruiz, G., Jeison, D. and Chamy, R. (2003). “Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. ” Water Research 37, 1371-1377.
Scheible, O. K., et al.(1993). “Process design manual for nitrogen control.” US. EPA,EPA/625/R-93/010, Washington DC.
Schnitzer, R.W. (1976). “The Chemistry of Humic Substances”Environmental Biogeochemistry. Ann Arbor Science, MI.
Siddiqui, M., Zhai, W., DeBroux, J., & Odem, W. (1994). “Survey of Bromide in Drinking Water and Impacts on DBP Formation,” AWWA Research Foundation and American Water Works Association, Denver, CO.
Song, K.G., Cho, J., Cho, K.W., Kim, S.D. and Ahn, K.H. (2010). “ Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions.” Desalination 250, 801-804.
Thurman, E.M. (1985). “Amount of Organic Carbon in Natural Water.” Organic Geochemistry of Natural Water, Junk Publishers, Dordrecht, The Netherland, 15-17.
Tseng, K. F., Chiou, J. H. and Shyu, C. Z.(1996). “Effects of pH value and hydraulic retention time on ammonia removal efficiency of a submerged biofilter in the Recirculating Eel Culturesystem.” J. Fish. Soc. Taiwan, 23, 323-333.
Wang, J. and Yang, N. (2004). “Partial nitrification under limited dissolved oxygen conditions.” Process Biochemistry 39, 1223-1229.
Yeh, H. H. and KAO, H. H.(1993). “Testing a Coke Biolfilter for the Pretreatment of Polluted Surface Water in Taiwan.” AWWA., 85:5:96.
Yeh, H. H., Huang, W.J., Hung, C. J. and Wang, S. C.(1995). “Advanced Treatment Processes for Disinfection By-Products Control when Treating Polluted Source Water .” 20th International Water Supply Congress, Durban, South Africa.

王文革 (1999) “生物濾床處理澄清湖優養化給水源之研究",國立成功大學環境工程研究所碩士論文。
王至誠(2011)“建立同時部分硝化、厭氧氨氧化及脫硝系統",國立交通大學環境工程系所博士論文
江自盛(2013)“兩種碳系濾材對氨氮降解能力及耗損率試驗研究",私立中原大學土木工程研究所碩士論文
李丁來(2007) ,“淨水程序中溶解性有機物之去除:生物濾床及污泥澄清池之操作評估”,國立交通大學還境工程研究所研究報告。
徐樹剛 (2011) ,“高濃度氨氮廢水回收與處理技術介紹",工業技術研究院。
張謝淵 (2000) ,“AOAO污水處理程序去除營養鹽之特性研究”,國立中央大學環境工程研究所博士論文。
馮宇柔(2008)“利用通氣式薄膜生物反應槽與厭氧氨氧化程序進行廢水除氮之研究",國立台灣大學環境工程學研究所博士論文
黃士恒 (2010) ,"資源化不織布擔體接觸曝氣系統處理校園污水之效率" ,國立台南大學環境生態研究所碩士論文。
黃志彬(2004),“提升傳統淨水處理程序效能之研究 鳳山場內模型場試驗研究-第二年”,國立交通大學環境工程究所研究報告。
鄭幸雄、王文革、吳靜如(1998) ,“澄清湖及港西淨水場水質特性研究",第十五屆自水研究發表會論文集,301-314。
譚仲萍 (2001) ,“添加固定化擔體對AO及AOAO程序脫氮除磷之研究”,國立雲林科技大學環境與安全工程系碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code