Responsive image
博碩士論文 etd-0621115-115240 詳細資訊
Title page for etd-0621115-115240
論文名稱
Title
應用主體為咔唑之小分子施體材料於有機太陽能電池之研究
Investigation of organic solar cells utilizing carbazole-based donors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-14
繳交日期
Date of Submission
2015-07-21
關鍵字
Keywords
電子施體材料、拉電子基團、咔唑、有機小分子、太陽能電池
electron-acceptor branched chain, organic molecules, electron-donor materials, solar cells, carbazole
統計
Statistics
本論文已被瀏覽 5676 次,被下載 27
The thesis/dissertation has been browsed 5676 times, has been downloaded 27 times.
中文摘要
在太陽能電池的歷史中,隨著科技的進步許多新材料或結構逐漸被開發研究出來。在全球化競爭與能源短缺的危機下,太陽能電池除了高效率,其降低製程成本也是目前研究方向之一。而隨著奈米科技的發展,有機太陽能電池的研究也逐漸受重視,其製程簡單、成本低廉、可大面積製造和可應用於可撓式基板皆為其優點。近年來,有機小分子太陽能電池逐漸興起,其最大優勢在於製程穩定,材料合成上可依需求做搭配,其效率也逐漸追上有機高分子太陽能電池,是極具潛力的一種太陽能電池。
本論文中所應用材料其主體為咔唑(Carbazole)基團,Carbazole其具有良好的電洞傳輸特性,透過搭配傾向拉電子基團之支鏈,形成對稱型A-π-D-π-A或非對稱型D-π-A之新穎結構之電子施體材料。本論文將利用此新開發以Carbazole為主體之材料製成有機太陽能電池元件,並進行元件優化並探討各材料在製程元件後上的差異。實驗結果表現最好為對稱型材料Com54製成的平面混合型異質皆面結構元件最高光電轉換效率可達1.44%、開路電壓0.8V、短路電流4.13 mA/cm2、填充因子0.43。而非對稱型材料則是Com52所製成的雙層平面型異質接面元件其最高光電轉換效率達0.36%、開路電壓1.02V、短路電流0.93 mA/cm2、填充因子0.31。
Abstract
Emerging demands for solar energy continuously inspires the development of new materials and device structures. Organic solar cells, which offer the advantages of easy manufacturing, low cost, capability of large-area process, and flexibility, have become one of important research topics in recent years.
In this thesis, we use a series of materials containing carbazole moiety and electron-withdrawing end group as the electron donor materials of organic solar cells.
Both the symmetric and asymmetric molecule structures are discussed. Com54 shows the best performance among all symmetrical molecules with the configuration of planar mixed heterojunction structure, which gives a power conversion efficiency of 1.44%, open circuit voltage of 0.8V, short circuit current density of 4.13 mA/cm2, and fill factor of 0.43. Com52 shows the best performance among all asymmetrical molecules with the configuration of bilayer heterojunction structure, which gives a power conversion efficiency of 0.36%, open circuit voltage of 1.02V, short circuit current density of 0.93 mA/cm2, and fill factor of 0.31.
目次 Table of Contents
中文論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池發展回顧 1
1-3 有機太陽能電池發展 2
1-4 研究動機與目的 4
1-4 各章提要 4
第二章 基礎理論 6
2-1 太陽光譜與地表上太陽輻射強度 6
2-2 有機太陽能電池之原理與機制 8
2-2-1 激子產生(Photoexcitaion and exciton formation) 8
2-2-2 激子擴散(Exciton diffusion) 8
2-2-3 激子分離(Exction dissociation) 8
2-2-4 電荷收集(Charge transport and collection) 8
2-3 有機太陽能電池輸出特性 10
2-3-1 開路電壓(Open circuit Voltage, Voc) 10
2-3-2 短路電流(Short circuit current, Jsc) 10
2-3-3 填充因子(Fill factor, F.F.) 10
2-3-4 光電轉換效率(Power conversion efficiency, PCE) 11
2-4 有機太陽能電池元件結構 12
2-4-1 單層結構(Single layer) 12
2-4-2 雙層平面型異質接面結構(Bilayer heterojunction) 12
2-4-3 塊材型異質接面結構(Bulk heterojunction) 12
2-4-4 平面混合型異質接面結構(Planar-mixed heterojunction) 12
2-5 小分子太陽能電池新穎主體材料 14
2-5-1 對稱型有機小分子發展與回顧 14
2-5-2 非對稱型有機小分子發展與回顧 17
第三章 實驗裝置與元件製作 18
3-1 實驗製程儀器介紹 18
3-1-1 超音波震盪機 18
3-1-2 紫外光臭氧清洗機(UV-Ozone) 18
3-1-3 純化系統-管式高溫爐(Tube-furnace) 18
3-1-4 低水氧手套箱(Glove box) 19
3-1-5 高真空熱蒸鍍系統 19
3-2 實驗量測儀器介紹 20
3-2-1 紫外光-可見光吸收頻譜儀(UV-Vis absorption spectrum) 20
3-2-2 橢圓偏振儀(Ellipseometer) 20
3-2-3 太陽光模擬頻譜量測系統(Solar simulator system) 21
3-3 太陽能電池元件製程與實驗材料 22
3-3-1 ITO電極黃光顯影蝕刻 22
3-3-2 ITO基板清洗與前處理 23
3-3-3 元件基本結構 24
3-3-4 實驗材料 25
3-3-5 有機太陽能電池元件蒸鍍製程 27
第四章 結果與討論 28
4-1 簡介 28
4-2 以CuPc為主體材料之元件 28
4-2-1 CuPC搭配C60之雙層平面型異質接面結構元件 28
4-2-2 Bphen電子阻擋層與陰極增益層之替換 30
4-2-3 CuPc搭配C60之混合型異質接面結構元件 32
4-3 對稱型小分子材料特性與元件 34
4-3-1 Com54、Com55、Com61 材料物理特性 34
4-3-2 Com54之有機太陽能電池 36
4-3-3 Com55之有機太陽能電池 40
4-3-4 Com61之有機太陽能電池 44
4-4 非對稱型小分子材料特性與元件 48
4-4-1 Com52、Com53材料物理特性 48
4-4-2 Com52之有機太陽能電池 50
4-4-3 Com53之有機太陽能電池 54
第五章 總結 56
參考文獻 57
參考文獻 References
[1] J. M. Tour, C. Kittrell, and V. L. Colvin, Nat Mater, vol. 9, pp. 871-4, 2010.
[2] 張正華等編著, 有機與塑膠太陽能電池. 臺北市: 五南出版社, 2007.
[3] A. Goetzberger and C. Hebling, Solar Energy Materials and Solar Cells, vol. 62, pp. 1-19, 2000.
[4] A.Goetzberger,C.Hebling, and H.W.Schock, Materials Science & Engineering R-Reports, vol. 40, pp. 1-46, 2003.
[5] J.Zhao,A.Wang,Green,M.A., Bognor Regis, Royaume-Uni: Wiley,Vol.7. 1999.
[6] O. Schultz, S.W.Glunz, and G. P.Willeke, Progress in Photovoltaics, vol. 12, pp. 553-558, 2004.
[7] X. Zhang, Solar Energy Materials and Solar Cells, vol. 81, pp. 197-203, 2004.
[8] M. A. Green,K.Emery, Y. Hishikawa, and W. Warta, Progress in Photovoltaics: Research and Applications, vol. 17, pp. 85-94, 2009.
[9] D.Kearns and M.Calvin, The Journal of Chemical Physics, vol. 29, pp. 950-951, 1958.
[10] C. W. Tang, Applied Physics Letters, vol. 48, pp. 183-185, 1986.
[11] P. Peumans and S. R. Forrest, Applied Physics Letters, vol. 79, pp. 126, 2001.
[12] G.Perrier,R.de Bettignies, S. Berson, N. Lemaitre, and S. Guillerez, Solar Energy Materials and Solar Cells, vol. 101, pp. 210-216, 2012.
[13] B. E.Hardin, W. Gaynor, I. K. Ding, S.-B. Rim, P. Peumans, and M. D. McGehee, Organic Electronics, vol. 12, pp. 875-879, 2011.
[14] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, Applied Physics Letters, vol. 84, pp. 4218, 2004.
[15] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Applied Physics Letters, vol. 84, pp. 3013, 2004.
[16] J.Burschka,N.Pellet,S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al. Nature, vol. 499, pp. 316-9, Jul 18 2013.
[17] S.D.Stranks,P.K.Nayak,W.Zhang,T. Stergiopoulos, and H. J. Snaith, Angew Chem Int Ed Engl, vol. 54, pp. 3240-8, 2015.
[18] 邵家驤等編著, 實用太陽能熱水器. 北京: 上海科學技術出版社, 1983.
[19] 王長貴, 太陽能光伏發電實用技術. 北京: 化學工業出版社, 2009.
[20] 石廣玉, 大氣輻射學. 北京: 科學出版社, 2007.
[21] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, et al., Advanced Materials, vol. 18, pp. 789-794, 2006.
[22] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, Journal of Applied Physics, vol. 94, pp. 6849, 2003.
[23] T.D.Anthopoulos and T.S. Shafai, Thin Solid Films, vol. 441, pp. 207-213, 2003.
[24] 陽新國等編著, 卟啉類光電功能材料的研究進展: 功能材料, 2003.
[25] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Körner, et al., Advanced Functional Materials, vol. 21, pp. 897-910, 2011.
[26] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, et al., Chemical Communications, vol. 47, pp. 1982-1984, 2011.
[27] D. Wynands, B. Mannig, M. Riede, K. Leo, E. Brier, E. Reinold, et al., Journal of Applied Physics, vol. 106, 2009.
[28] B. Baumeier, D. Andrienko, Y. C. Ma, and M. Rohlfing, Journal of Chemical Theory and Computation, vol. 8, pp. 997-1002, 2012.
[29] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, et al., Journal of the American Chemical Society, vol. 134, pp. 11064-11067, 2012.
[30] T.Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, and J. Roncali, Chemical Communications, pp. 1673-1675, 2009.
[31] T. Rousseau, A. Cravino, E. Ripaud, P. Leriche, S. Rihn, A. De Nicola, et al., Chemical Communications, vol. 46, pp. 5082-5084, 2010.
[32] H.-Y. Lin, W.-C. Huang, Y.-C. Chen, H.-H. Chou, C.-Y. Hsu, J. T. Lin, et al., Chemical Communications, vol. 48, pp. 8913-8915, 2012.
[33] C. He, Q. He, Y. He, Y. Li, F. Bai, C. Yang, et al., Solar Energy Materials and Solar Cells, vol. 90, pp. 1815-1827, 2006.
[34] H. X. Shang, H. J. Fan, Y. Liu, W. P. Hu, Y. F. Li, and X. W. Zhan, Advanced Materials, vol. 23, pp. 1554-1557, 2011.
[35] S. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. Wei, P. I. Djurovich, et al., Applied Physics Letters, vol. 94, p. 233304, 2009.
[36] G. Chen, H. Sasabe, Z. Wang, X.-F. Wang, Z. Hong, Y. Yang, et al., Advanced Materials, vol. 24, pp. 2768-2773, 2012.
[37] J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, et al., Chemistry of Materials, vol. 23, pp. 4666-4668, 2011.
[38] A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, et al., ACS Nano, vol. 7, pp. 4569-4577, 2013.
[39] N. M. Kronenberg, V. Steinmann, H. Bürckstümmer, J. Hwang, D. Hertel, F. Würthner, et al., Advanced Materials, vol. 22, pp. 4193-4197, 2010.
[40] H.-W. Lin, L.-Y. Lin, Y.-H. Chen, C.-W. Chen, Y.-T. Lin, S.-W. Chiu, et al., Chemical Communications, vol. 47, pp. 7872-7874, 2011.
[41] L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou, F. Lin, et al., Journal of the American Chemical Society, vol. 133, pp. 15822-15825, 2011.
[42] Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, et al., Journal of the American Chemical Society, vol. 134, pp. 13616-13623, 2012.
[43] C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, and W. E. Jones, The Journal of Physical Chemistry B, vol. 108, pp. 1537-1543, 2004.
[44] L. Cattin, F. Dahou, Y. Lare, M. Morsli, R. Tricot, S. Houari, et al., Journal of Applied Physics, vol. 105, pp. 034507, 2009.
[45] M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, et al., Journal of Applied Physics, vol. 100, p. 094506, 2006.
[46] A. N. Bartynski, C. Trinh, A. Panda, K. Bergemann, B. E. Lassiter, J. D. Zimmerman, et al., Nano Letters, vol. 13, pp. 3315-3320, 2013.
[47] S. Uchida, J. G. Xue, B. P. Rand, and S. R. Forrest, Applied Physics Letters, vol. 84, pp. 4218-4220, 2004.
[48] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Advanced Materials, vol. 17, pp. 66-71, 2005.
[49] Z. R. Hong, Z. H. Huang, and X. T. Zeng, Chemical Physics Letters, vol. 425, pp. 62-65, 2006.
[50] H.-W. Lin, H.-W. Kang, Z.-Y. Huang, C.-W. Chen, Y.-H. Chen, L.-Y. Lin, et al., Organic Electronics, vol. 13, pp. 1925-1929, 2012.
[51] Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, et al., Sci Rep, vol. 4, p. 4691, 2014.
[52] V. Gupta, A. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, and A. J. Heeger, Sci Rep, vol. 3, p. 1965, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code