Responsive image
博碩士論文 etd-0621115-120758 詳細資訊
Title page for etd-0621115-120758
論文名稱
Title
探討 isl2/coupTFIb 與 follistatin -BMP 訊息傳遞之關聯對血管發育的影響
Follistatin -BMP Signaling Regulated by isl2/ coupTFIb is Critical for Vascular Development
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-25
繳交日期
Date of Submission
2015-07-22
關鍵字
Keywords
尾部靜脈叢、骨形成蛋白、斑馬魚、卵泡抑制素、區間血管
Caudal vein plexus, Islet2, CoupTFIb, Zebrafish, Bone morphogenetic protein, Intersegmental vessels, Follistatin 1a
統計
Statistics
本論文已被瀏覽 5658 次,被下載 77
The thesis/dissertation has been browsed 5658 times, has been downloaded 77 times.
中文摘要
斑馬魚血管發育的過程中,目前已知主動靜脈受到許多分子機制調控,但是對於區間血管 (intersegmental vessels, ISV) 及尾部靜脈血管叢 (caudal vein plexus, CVP) 的調控機制是不明確的。先前研究中指出,受Notch訊息路徑調控的轉錄因子islet2 (LIM homeobox gene, Isl2) 及coupTFIb (nr2f1b, orphan nuclear receptor Chicken ovalbumin upstream promoter transcription factor II的家族成員) 參與斑馬魚靜脈的特化及ISV的生長,為了研究isl2及coupTFIb調控血管發育的分子機制,我們利用DNA微陣列的技術尋找受isl2及coupTFIb調控的下游基因,在我的研究中,我挑選有可能調控血管發育的基因follistatin 1a (fsta, 卵泡抑制素),我之所以對fsta有興趣,主要是因fsta為bone morphogenetic protein (BMP) 的結抗劑,BMP訊息傳遞除了會在胚胎發育早期參與體軸的發育,近期研究更指出BMP訊息傳遞參與CVP及靜脈血管生成的主要訊息路徑。然而對於fsta-BMP訊息路徑是否影響血管發育並無任何文獻,此外Notch與BMP兩個訊息路徑對血管的關聯性也是未知的。
首先我利用胺基酸序列分析fsta在各物種之間的保守性之餘還發現BMP結合位在各物種間保守性高,之後利用in-situ hybridization在斑馬魚胚胎18個體節時期中得知fsta mRNA表達於前側板中胚層及斑馬魚胚胎發育後24-48小時表達於脈管及CVP,因此我認為fsta會去參與斑馬魚血管發育。在fli1 promoter驅動下過度表達fsta,我發現過度表達fsta所造成的血管缺陷與抑制isl2及coupTFIb是相似的,可能fsta會受到isl2/coupTFIb的負向調控。為了了解fsta調控斑馬魚血管發育的分子機制,我利用in-situ hybridization檢測Tg(fli:fsta)是否影響動靜脈標誌物 (stabilin, ephrinb2, flk-1, flt4 and mrc1) 的表達,此外Tg(fli:fsta)藉由TUNEL及AO檢測過度表達得知fsta導致ISV及CVP的缺陷不適因內皮細胞凋亡所造成的。我們注射fsta morpholino並未造成血管缺陷但是卻可以回復過度表達fsta的表徵,證實Tg(fli:fsta)造成血管缺陷的專一性。此外我利用in-situ hybridization檢測fsta mRNA表達量在isl2/coupTFIb mophants中確實是下降,對於fsta是否受isl2/coupTFIb的負向調控,我進一步共同注射fsta及isl2 morphlinos在斑馬魚胚胎中,會回復isl2 morphants所造成的血管缺陷,亦可回復 coupTFIb morphants的缺陷,因此我們得到的結論是fsta受isl2/coupTFIb-Notch訊息傳遞的負向調控,並可能透過參與BMP訊息傳遞做為重要調控CVP及靜脈血管生成的途徑。
Abstract
While many regulators and signaling molecules that controlling the process of vascular development are described in zebrafish, genetic regulating the vein identity, intersegmental vessels (ISV) and caudal vein plexus (CVP) patterning is still not fully understood. We previously identified the transcription factors Islet2 (LIM homeobox gene, Isl2) and CoupTFIb(orphan nuclear receptor Chicken ovalbumin upstream promoter transcription factor II family) required for specification of the vein and ISV growth mediated by Notch pathway in zebrafish. Microarray analysis showed highly overlapping downstream targets controlled by coupTFIb and isl2, suggesting that coupTFIb and isl2 cooperatively regulate vascular development. In this study, we selectively analyze the functional relevance of one potential target from array hits, follistatin 1a (fsta). Fsta is a bone morphogenetic protein (BMP) antagonist related to axis formation during the development and BMP signaling has been shown involved in venous angiogenesis. However, there is no description of fsta functioning in vascular development so far. The interaction of notch and BMP signalings to regulate vasculization is unknown.
We first examine amino acid sequence comparison and phylogenetic analysis and show fsta is highly conserved among the vertebrates. Our in-situ hybridization results showed fsta mRNA is expressed in the lateral plate mesoderm at 18 somite stage and in vessels at 24-48hpf, suggesting its roles in vasculature. By overexpressing fsta driven by fli1 promoter in zebrafish embryos, we observed the vascular defects in the growth of ISV and CVP, which is mimic the phenotype of isl2/coupTFIb morphants. Consistent with the vascular defects in Tg(fli:fsta) embryo, we observe the changed expression of vascular markers (stabilin, ephrinb2, flk-1, flt4 and mrc1). We further performed TUNEL and AO assays to confirm the cell death is not the reasons to cause the decrease of ISV and CVP growth. On the other hand, knockdown of fsta does not cause vascular defects but it can restore the defects caused by fsta overexpression We further address the genetic interaction between fsta and isl2/coupTFIb, we found fsta expression is increased in isl2/coupTFIb morphants by in-situ hybridization. In addition, knockdown of fsta can partial rescue the vascular defects in coupTFIb and isl2 morphants. These data suggest fsta likely regulated by coupTFIb and isl2. Since fsta involved in BMP signals and coupTFIb and isl2 functions downstream of Notch, we conclude that fsta-BMP signaling play an important role to regulate vascular patterning, which interacts with isl2/coupTFIb-Notch signaling.
目次 Table of Contents
目錄

論文審定書 i
中文摘要 ii
Abstract iv
誌謝 vi
目錄 vii
圖表目錄 xi
中英文名詞對照表 xii
Abbreviation xiii
壹、前言 1
模式生物:斑馬魚 1
斑馬魚血管發育 2
VEGF-Notch訊號對動靜脈的分化的影響 3
Follistatin & BMP signaling 3
CoupTFIb與islet2調控血管脈絡的生成及下游目標基因 5
研究動機 6
貳、實驗材料與方法 13
斑馬魚的飼養繁殖以及受精卵收集 13
斑馬魚顯微注射法 13
嗎啉基 (Morpholino) 13
探針製作 14
原位組織染色(In situ hybridization) 14
冷凍組織切片 15
Tg(fli:fsta)及fsta mRNA序列的選殖及備製 16
pGL3-itm2bb upstream選殖 17
Cos-1細胞轉染 18
Total RNA- cDNA製作 18
Genome DNA 19
Quantitative PCR (qPCR) 20
Acridine orange (AO) staining 20
TUNEL Assay 20
參、實驗結果 22
1. CoupTFIb/isl2 mophants在DNA microarray中下游基因的表達 22
2. fsta在脊椎動物中具有高度的保守性 22
3. fsta在斑馬魚胚胎發育過程中表現的位置 23
4. Tg(fli:fsta)與isl2/coupTFIb mophants造成血管缺陷的表徵相似 23
5. Tg(fli:fsta)導致血液循環缺陷及心包膜水腫 24
6. Tg(fli:fsta)導致血管缺陷並非由細胞凋亡所造成 25
7. Tg(fli:fsta)影響血管標誌物表達量 25
8. fstaATG MO對斑馬魚血管發育沒有影響但可回復Tg(fli:fsta) 26
9. fstae3i3 MO專一性測試 26
10. fsta受上游基因isl2及coupTFIb調控 27
11. BMP inhibitor與Tg(fli:fsta)造成的血管缺陷相似,可能調控BMP signaling影響血管新生 27
12. fsta與上游基因Vegf與Notch之間的關係 28
13. fsta受coupTFIb/isl2調控下,在斑馬魚中扮演的角色 28
肆、問題與討論 31
1. fstaMO專一性作用在fsta並不作用在fstb,兩者有沒有交互作用 31
2. fsta是否透過BMP signaling影響血管的生成。 31
3. fstaMO是否會使血管過度生長 32
4. fsta序列中包含Follistatin-Like family,與血管生成是否有關 32
5. DNA microarray中的基因,在血管內皮細胞中可能扮演的角色 33
6. DNA microarray中的hdac4與fsta兩者之間與血管新生的關係 33
7. BMP signailing其他拮抗劑會不會影響靜脈血管生成 33
8. Itm2b跟癡呆症有關,itm2bb在斑馬魚中是否有相似表徵 34
伍、圖 38
圖一、CoupTFIb/isl2 mophants在DNA microarray中下游基因的表達 39
圖二、fsta在脊椎動物中具有高度的保守性 41
圖三、fsta在斑馬魚胚胎發育過程中表現的位置 42
圖四、Tg(fli:fsta)與isl2/coupTFIb mophants造成血管缺陷的表徵相似 43
圖五、Tg(fli:fsta)導致血液循環缺陷及心包膜水腫 44
圖六、Tg(fli:fsta)導致血管缺陷並非由細胞凋亡所造成 45
圖七、Tg(fli:fsta)影響血管標誌物表達量 46
圖八、fstaATG MO對斑馬魚血管發育沒有影響但可回復Tg(fli:fsta) 47
圖九、fstae3i3 MO專一性測試 48
圖十、fsta被上游基因isl2/coupTFIb調控 49
圖十一、BMP inhibitor與Tg(fli:fsta)造成的血管缺陷相似,可能調控BMP signaling影響血管新生 50
圖十二、fsta與上游基因Vegf與Notch之間的關係 51
圖十二、fsta受coupTFIb/isl2調控下,在斑馬魚中扮演的角色 52
陸、表格 53
柒、附錄 56
附件一、藥品配製(斑馬魚) 56
附件二、、藥品配製(細胞培養) 57
附件三、藥品配製(protein及電泳緩衝液及配置條件) 58
附件五、itm2bb在血管生成重要時期的表達位置 62
附件六、itm2bbATG MO造成血管缺陷 63
附件七、itm2bbi2e3 MO專一性的測試 64
附件八、itm2bbATG MO導致血管缺陷與細胞凋亡的關係 65
附件九、itm2bbi2e3 MO導致血液循環缺陷及心包膜水腫 66
附件十、itm2bbATG MO影響血管標誌物表達量 67
附件十一、過度表達itm2bb造成些微的血管缺陷 68
附件十二、斑馬魚itm2bb upstream不同長度區的活性測試 69
附件十三、itm2bb與上游基因Vegf與Notch之間的關係 70
附件十四、pCR4-TOPO-fsta 71
附件十五、pCS2plus-fsta 72
附件十六、pTol/fli/fsta/cg2 73
附件十七、pTol/fli/itm2bb/cg2 74
附件十八、pGL3-itm2bb-3.5k 75
附件十九、pGL3-itm2bb-2.5k 76
附件二十、pGL3-itm2bb-1.5k 77
附件二十一、pGL3-itm2bb-1k 78
捌、參考文獻 79

圖表目錄
圖一、CoupTFIb/isl2 mophants在DNA microarray中下游基因的表達 35
圖二、fsta在脊椎動物中具有高度的保守性 36
圖三、fsta在斑馬魚胚胎發育過程中表現的位置 37
圖五、Tg(fli:fsta)導致血液循環缺陷及心包膜水腫 39
圖六、Tg(fli:fsta)導致血管缺陷並非由細胞凋亡所造成 40
圖七、Tg(fli:fsta)影響血管標誌物表達量 41
圖八、fstaATG MO對斑馬魚血管發育沒有影響但可回復Tg(fli:fsta) 42
圖九、fstae3i3 MO專一性測試 43
圖十、fsta被上游基因isl2/coupTFIb調控 44
圖十一、BMP inhibitor與Tg(fli:fsta)造成的血管缺陷相似,可能調控BMP signaling影響血管新生 45
圖十二、fsta與上游基因Vegf與Notch之間的關係 46
圖十二、fsta受coupTFIb/isl2調控下,在斑馬魚中扮演的角色 47
表一、probe construct、Tol2 construct及itm2bb Luceferace assay construct primer 48
表二、QPCR primer、Mopholino efficiency primer 49
表三、Mopholino及Probe 50
參考文獻 References
捌、參考文獻
1. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67.
2. Gore, A.V., et al., Vascular Development in the Zebrafish. Cold Spring Harb Perspect Med, 2012. 2(5).
3. Revencu, N. and M. Vikkula, Cerebral cavernous malformation: new molecular and clinical insights. J Med Genet, 2006. 43(9): p. 716-21.
4. Patterson, C., Torturing a blood vessel. Nat Med, 2009. 15(2): p. 137-8.
5. Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007. 8(6): p. 464-78.
6. Agathon, A., C. Thisse, and B. Thisse, The molecular nature of the zebrafish tail organizer. Nature, 2003. 424(6947): p. 448-52.
7. Carmeliet, P., Angiogenesis in health and disease. Nat Med, 2003. 9(6): p. 653-60.
8. Blum, Y., et al., Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol, 2008. 316(2): p. 312-22.
9. Gerhardt, H., et al., VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol, 2003. 161(6): p. 1163-77.
10. Jin, S.W., et al., Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development, 2005. 132(23): p. 5199-209.
11. Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.
12. Ridgway, J., et al., Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 2006. 444(7122): p. 1083-7.
13. Fischer, A., et al., The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev, 2004. 18(8): p. 901-11.
14. Liu, H., S. Kennard, and B. Lilly, NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res, 2009. 104(4): p. 466-75.
15. Leslie, J.D., et al., Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development, 2007. 134(5): p. 839-44.
16. Siekmann, A.F. and N.D. Lawson, Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature, 2007. 445(7129): p. 781-4.
17. Swift, M.R. and B.M. Weinstein, Arterial-venous specification during development. Circ Res, 2009. 104(5): p. 576-88.
18. Hellström, M., L.K. Phng, and H. Gerhardt, VEGF and Notch Signaling: The Yin and Yang of Angiogenic Sprouting. Cell Adh Migr, 2007. 1(3): p. 133-6.
19. You, L.R., et al., Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 2005. 435(7038): p. 98-104.
20. Rodino-Klapac, L.R., et al., Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve, 2009. 39(3): p. 283-96.
21. Sartori, R., P. Gregorevic, and M. Sandri, TGFbeta and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab, 2014. 25(9): p. 464-71.
22. Mendell, J.R., et al., A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. Mol Ther, 2015. 23(1): p. 192-201.
23. Wang, H.Q., et al., Follistatin-related gene (FLRG) expression in human endometrium: sex steroid hormones regulate the expression of FLRG in cultured human endometrial stromal cells. J Clin Endocrinol Metab, 2003. 88(9): p. 4432-9.
24. Thompson, T.B., et al., The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell, 2005. 9(4): p. 535-43.
25. Munoz-Sanjuan, I. and A.H. Brivanlou, Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci, 2002. 3(4): p. 271-80.
26. Sood, R., et al., Gene expression patterns in human placenta. Proc Natl Acad Sci U S A, 2006. 103(14): p. 5478-83.
27. Dal-Pra, S., et al., Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol, 2006. 298(2): p. 514-26.
28. Geng, Y., et al., Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proc Natl Acad Sci U S A, 2011. 108(17): p. 7058-63.
29. Kudo-Saito, C., et al., Targeting FSTL1 prevents tumor bone metastasis and consequent immune dysfunction. Cancer Res, 2013. 73(20): p. 6185-93.
30. Sylva, M., A.F. Moorman, and M.J. van den Hoff, Follistatin-like 1 in vertebrate development. Birth Defects Res C Embryo Today, 2013. 99(1): p. 61-9.
31. Bauer, H., et al., Follistatin and noggin are excluded from the zebrafish organizer. Dev Biol, 1998. 204(2): p. 488-507.
32. Wiley, D.M., et al., Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol, 2011. 13(6): p. 686-92.
33. Walsh, D.W., et al., Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol, 2010. 20(5): p. 244-56.
34. Krens, S.F., et al., ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics, 2008. 9: p. 196.
35. Kim, J.D., et al., Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev Cell, 2012. 23(2): p. 441-8.
36. Lawson, N.D. and B.M. Weinstein, Arteries and veins: making a difference with zebrafish. Nat Rev Genet, 2002. 3(9): p. 674-82.
37. Zheng, Y., et al., Angiomotin-like protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circ Res, 2009. 105(3): p. 260-70.
38. Yu, P.C., et al., TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res, 2010. 106(7): p. 1221-32.
39. Choi, J., et al., Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development, 2011. 138(6): p. 1173-81.
40. Covassin, L.D., et al., Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci U S A, 2006. 103(17): p. 6554-9.
41. Murphy, P.A., et al., Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med, 2012. 4(117): p. 117ra8.
42. Goodman, C.A. and T.A. Hornberger, New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass. F1000Prime Rep, 2014. 6: p. 20.
43. Coomaraswamy, J., et al., Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease. Proc Natl Acad Sci U S A, 2010. 107(17): p. 7969-74.
44. Tamayev, R., et al., beta- but not gamma-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia. EMBO Mol Med, 2012. 4(3): p. 171-9.
45. Del Campo, M., et al., BRI2-BRICHOS is increased in human amyloid plaques in early stages of Alzheimer's disease. Neurobiol Aging, 2014. 35(7): p. 1596-604.
46. Del Campo, M. and C.E. Teunissen, Role of BRI2 in dementia. J Alzheimers Dis, 2014. 40(3): p. 481-94.
47. Tsachaki, M., et al., BRI2 Interacts with BACE1 and Reduces its Cellular Levels by Reducing the Levels of BACE1 mRNA and Inducing its Degradation Through the Lysosomal Pathway. Curr Alzheimer Res, 2013.
48. Sun, Y., et al., Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol, 2010. 189(7): p. 1157-69.
49. Deroanne, C.F., et al., Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene, 2002. 21(3): p. 427-36.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code