Responsive image
博碩士論文 etd-0621115-130819 詳細資訊
Title page for etd-0621115-130819
論文名稱
Title
利用熱退火方式製作量子井熱混合之電致吸收調變器與半導體光放大器
Using Quantum Well Intermixing for Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-23
繳交日期
Date of Submission
2015-07-21
關鍵字
Keywords
內部晶格缺位擴散、量子井熱混合擴散、能隙工程、光積體電路、二氧化矽
Quantum Well Intermixing, Photonic integrated circuit, Bandgap engineering, SiO2, Impurity Free Vacancy Diffusion
統計
Statistics
本論文已被瀏覽 5683 次,被下載 115
The thesis/dissertation has been browsed 5683 times, has been downloaded 115 times.
中文摘要
在本文中,以量子井熱混合擴散方式-內部晶格缺位擴散,來調整材料量子井能隙以達到光積體電路整合的最佳化,並以整合電致吸收調變器與半導體光放大器為研究。且藉由該擴散機制,可區域性調整材料能隙,使單一晶片中電致吸收調變器操作波長往短波長移動,又稱之為藍位移。而半導體光放大器仍維持材料操作波長,如此一來電致吸收調變器會因為量子侷限史塔克效應可以與半導體光放大器的操作波長匹配,使整體的效率提高。
在製程中,利用二氧化矽當作介電質材料,來加強內部晶格缺位擴散,此材料在快速熱退火時會在晶片表面產生應力。藉由Ga擴散到二氧化矽中使得應力獲得釋放,同時也在材料中產生空缺,來優化量子井熱混合製程,由此可知二氧化矽薄膜可以區域型的調整能隙。在本製程中,以GaAs材料來當作在快速熱退火處理時的覆蓋層,在高溫熱處理下可抑制晶片表面的As元素揮發,且量子井熱混合時所需的溫度要求較低,而且可以減少晶片結構內部元素的擴散,如Zn。將此方法應用在1.3cm*1.3cm面積大的晶片上,此晶片擁有多重量子井結構,並且是由InGaAsP組成,將此晶片製作電致吸收光調變器與半導體光放大器,藉由以650οC高溫熱處理一分鐘,可以在40μm×200μm的尺度內調整波長至40nm。比較有經過熱混合處理的電致吸收調變器以及沒有經過熱混合處理的電致吸收調變器,發現他們有相同的消光比,這表示在晶片結構裡所摻雜的原子濃度是只有少部分擴散的。最後,由量測半導體光放大器可得知其增益量達到20dB,由此可以證實整合式元件是非常有應用的潛力以及有重複性的製程。
Abstract
In this dissertation, a quantum well intermixing (QWI) technology, called as impurity free vacancy diffusion (IFVD), is used to perform the bandgap engineering of material in order to improve monolithic photonic integration performance. Monolithic integration of SOA and EAM is taken as test devices. By IFVD with patterned area, the regional bandgap of EAM area has blue shift in transition energy level, while SOA area remains the same. So that, quantum confined Stark effect in EAM can have matched wavelength with SOA area, enhancing the overall efficiency.
In the processing, SiO2 film is deposited on top of the sample for controlling the
IFVD. Through diffusion of Ga atom into SiO2 film for releasing stress of wafer
during high temperature rapid thermal annealing, the vacancies simultaneously are
created in material, enhancing QWI processing. Thus, locally pattering SiO2 film can
induce the lateral bandgap engineering. In this processing, GaAs material is used as
cap layer to reduce As desorption during annealing, allowing QWI processing as in
lower temperature regime and thus reducing the parasitic diffusion processing, for
example Zn. 1.3cm×1.3cm wafer with InGaAsP MQW is used as sample to integrate
SOA and EAM. The 650oC annealing temperature with one minute time has induced
40nm wavelength difference along 40μm×200μm area. EAM with QWI has been to
found to have the same extinction ratio in comparison to the one without QWI,
suggesting low parasitic atom diffusion. Also, gain of 20 dB in SOA is also observed,
showing the potential application of monolithic integration with regrowth free processing.
目次 Table of Contents
中文審定書 ………………………………………………………….. ⅰ
英文審定書 ………………………………………………………….. ⅱ
誌謝 ………………………………………………………………….. ⅲ
中文摘要 ..………………………………………………………..….. ⅳ
英文摘要 …………………………………………………………..… ⅴ
目錄 ………………………………………………………………….. ⅵ
圖次 ………………………………………………………………….. ⅶ
第一章 簡介 ………………....................................................... 1
1.1 前言 ......................................................................... 1
1.2 研究動機(EAM-SOA) ….............................................. 1
1.3 量子井材料能隙工程 .................................................. 4
1.4 先前工作 ................................................................... 9
1.5 主要工作 .................................................................. 14
第二章 理論與程式模擬 …………………………………………...... 16
2.1 熱混合擴散機制 ……………………………………........... 16
2.2 電致光吸收調變器與光放大器 ……………………........... 19
2.2.1 光吸收定理 …………………………………….....……... 19
2.2.2 光放大定理 …………………………………….....……... 22
2.3 量子侷限史塔克效應 …………………………….....…...... 23
2.4 計算熱混合擴散量子井 …………………………....…...... 25
2.5 熱混合擴散效應下能帶結構的改變 ……………......……. 26
2.6 量子井波函數與基態的計算 ……………………......……. 29
第三章 材料分析 ……………………………………………..……… 32
3.1 先前工作 ………………………………………….....……. 32
3.2 二次離子質譜儀分析 …………………………….…....…. 35
3.3 優化熱退火製程 ……………………………….…....……. 45
3.4 改變試片內部結構 ……………………………….....……. 47
第四章 熱混合擴散與整合元件方法與製作 ……………….……… 50
4.1 熱混合擴散製程 ………………………………….…....…. 50
4.2 整合元件製程 ………………………………….……....…. 55
4.2.1 蒸鍍P型金屬與蒸鍍對準記號 …………….....……….. 55
4.2.2 P型反向式梁脊波導蝕刻 ……………….……...……… 57
4.2.3 離子佈值 ………………………………….……...…….. 59
4.2.4 蝕刻N型接觸層、蒸鍍N型金屬與定義絕緣層 .…....... 60
4.2.5 平坦化製程 ……………………….………………..…... 65
4.2.6 蒸鍍共平面電極 ………………….………………...….. 69
4.2.7 半絕緣基板研磨 ……………….…………………...….. 71
第五章 元件特性量測 ……………………….……………………… 72
5.1 EAMSOA整合元件電流對電壓分析 ……………......….. 72
5.2 EAMSOA整合元件電激發光 ………………………...…. 72
5.3 EAMSOA整合元件光電流頻譜 ……………………….... 74
5.4 EAMSOA整合元件偏壓相依穿透率 ………………...…. 76
第六章 結論 …………………………………………………...……. 78
參考文獻 ...………………………………………………….....….... 79
參考文獻 References
[1]張智杰,Wavelength Match Chain-integrated EAM and SOA Using Quantum Well Intermixing,2008.
[2]http://projects.csail.mit.edu/angstrom/SLS/AngstromStudentMeeting12-1-10.pdf
[3]R. JW, J. LA, S. EJ,” 40 Gbit/s photonic receivers integrating UTC photodiodes with high- and low-confinement SOAs using quantum well intermixing and MOCVD regrowth,” electronic letter Vol.42, 3 August 2006.
[4]V. Hofsass, J. Kuhn, C. Kaden, “Optical integration of laterally modified multiple quantum well structures by implantation enhanced intermixing to realize gain coupled DFB lasers,” NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol. 104, December 1995.
[5]D. Hofstetter, B. Maisenholder, and H. P. Zappe, “Quantum-well intermixing for fabrication of lasers and photonic integrated circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, July/August 1998.
[6]P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C.Jagadish,“Silane Flow Rate Dependence of SiOx Cap Layer Induced
Impurity-Free Intermixing of GaAs/AlGaAs Quantum Wells,” Journal of The
Electrochemical Society, Vol.147, 2000.
[7]D. L. Green and E. L. Hu, ”Effect of superlattices on the low-energy ion-induced damage in GaAs/Al(Ga)As structures,” J. Vac. Sci. Technol. B12(6),Nov/Dec 1994.
[8]H. S. Diie and T. Mei, ”Plasma-Induced Quantum Well Intermixing for Monolithic
Photonic Integration,” IEEE Journal of Selected Topics in Quantum Electronics,
Vol. 11, No. 2, March/April 2005.
[9]H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H.
Tang, ”Experimental and Theoretical Analysis of Argon Plasma-Enhanced
Quantum-Well Intermixing,” IEEE Journal of Quantum Electronics, Vol. 40, No.
2, February 2004.
[10]S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M.
Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva,
and I. V. Mitchell, ”Photonic Integrated Circuits Fabricated Using Ion
Implantation,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4,
No. 4, July/August 1998.
[11]O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, “A
universal damage induced technique for quantum well intermixing,” Appl. Vol. 72,
5 Number /2 February 1998.
[12]J. E. Epler, F.A. Ponce, F.J. Endicott, and T.L. Paoli, “Layer disordering of
GaAs/AlGaAs superlattices by diffusion of laser-incorporated Si,” J. Appl. Phys.
64(7), 1 October 1988.
[13]E. H. Li, and B. L. Weiss, “Analytical Solution of the Subbands and Absorption
Coefficients of AlGaAs/GaAs Hyperbolic,” IEEE Journal of quantum electronic,
Vol. 29, No. 2. February 1993.
[14]H. Kroemer, “Quantum Mechanics: For Engineering, Materials Science and
Applied Physics, Prentice Hall, 1994.
[15]李政鍵 , Unsymmetry Spiked-Quantum Well Design and Electroabsorption
Modulators Based on the InAlAs/InGaAlAs Material System,2004.
[16]I. Gontijo, T. Krauss, J. H. Marsh, and R. M. De La Rue, “Postgrowth control of
GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE
Journal of Quantum Electronic, vol. 30, May 1994.
[17]L.J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, and W.E. Plano, “Effects of dielectric encapsulation and As overpressure on Al-Ga interdiffusion in AlGaAs/GaAs quantum well heterostructures,” Journal Appl. Phys. 61(4), 15 February 1987.
[18]O. BS, M. K, Street MW, ”Selective quantum-well intermixing in GaAs-AlGaAs
structures using impurity-free vacancy diffusion” IEEE Journal of quantum
electronic Vol. 33 , October 1997.
[19]S. SK, Y. DH, Y. KH, ” Area selectivity of InGaAsP-InP multiquantum-well
intermixing by impurity-free vacancy diffusion,” IEEE Journal of Selected Topics
in Quantum Electronics Vol.4, July/August 1998.
[20]http://www.ioffe.ru/SVA/NSM/Semicond/GaInAsP/bandstr.html
[21]A.S.W.Lee,M. MacKenzie, D.A. Thompson, J. Bursik, B. J. Robinso n,
Appl. Phys. Let t . 78, 3199 (2001).
[22]S. L. Chuang,“Physics of Optoelectronic Devices,"John Wiley & Sons,Inc",1995.
[23]H. Peyre, F. Alsina, J. Camassel, J. Pascual, R. W. Glew” Thermal stability of
InGaAsAnGaAsP quantum wells”, J. Appl. Phys. 73 (6), 15 April 1993.
[24]D. M. Baney, P. Gallion “Theory and Measurement Techniques for the Noise
Figure of Optical Amplifiers,” Optical Fiber Technology, June 2000.
[25]D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T.H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structure: The Quantum-Confined Stark Effect,” Phys. Rev. Lett. 53, 2173,1984.
[26]W. Franz, Z. Naturforsch., Vol.13, pp. 484, 1958.
[27]L. V. Keldysh, Zh. Eksp. Sov. Phys., Vol. JETP7, pp. 788, 1953.
[28]H. Kroemer, “Quantum Mechanics: For Engineering, Materials Science, and Applied Physics, ” Prentice Hall, 1994.
[29]曾令宇,Sputtered SiO2 Enhance Quantum Well Intermixing for Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers.
[30]李國瑜,Sputtered SiO2 nitrogen-surrounding Quantum well Intermixing for Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code