Responsive image
博碩士論文 etd-0621115-133426 詳細資訊
Title page for etd-0621115-133426
論文名稱
Title
奈米流體噴霧冷卻傳熱性能分析
Spray Heat Transfer with Different Nanofluids
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
180
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-13
繳交日期
Date of Submission
2015-07-22
關鍵字
Keywords
奈米流體、臨界熱通量、噴霧冷卻、沸騰曲線、冷卻曲線
nanofluid, spray cooling, cooling curve, boiling curve, critical heat flux
統計
Statistics
本論文已被瀏覽 5765 次,被下載 458
The thesis/dissertation has been browsed 5765 times, has been downloaded 458 times.
中文摘要
本論文主要是在探討利用奈米流體建立噴霧冷卻系統並探討其熱傳性能,而在以往噴霧冷卻的文獻中,噴嘴孔徑(dj)、流量(Q)、噴嘴到測試表面的距離(Z)及次冷度(Tsub)等皆會影響熱傳性能,但本研究主要在探討奈米流體對熱傳性能的增強,故上述提到之參數皆為定值,其中dj為270 (μm)、Q為0.36 (L/min),Z為30 (mm),而Tsub為72 (℃)。實驗中以黃銅塊做為測試表面,而後在去離子水中加入不同之奈米粉末(銀、奈米碳管、鋁、二氧化鈦、二氧化矽、三氧化二鋁、四氧化三鐵)製作奈米流體,接著利用噴嘴進行霧化將其噴灑在上述之測試表面上,來提高本系統之散熱能力。本研究利用穩態及暫態兩種方法進行實驗,觀察去離子水及不同奈米流體及濃度在測試表面之沸騰現象及記錄測試表面上之溫度變化,並將結果以沸騰曲線圖及冷卻曲線圖表示。本論文最終目地是希望將目前市面上主要之奈米粉末所製成之奈米流體和去離子水其散熱性能做深入的比較及分析,以期能實際應用在電子零件冷卻裝置上,解決目前電子零件單位面積之發熱功率急增加之問題。
Abstract
This study aims to establish a spray cooling system with nanofluids and investigate its heat transfer performance. In previous study of spray cooling, nozzle diameter (dj), volumetric flow rate(Q), distance(Z) between nozzle and test surface, and subcooling temperature(Tsub) and so on will influence heat transfer performance. However, in our study, foucs on heat transfer performance enhancement by nanofluids, so all of mentioned parameter above are constant, which dj is 270(μm), Q is 0.36(L/min), Z is 30(mm) and (Tsub) is 72(℃). A brass block was used as the test surface in the experiment. This study then added different nanoparticles (silver, carbon nanotube, aluminum, titanium dioxide, silicon dioxide, aluminum oxide, and ferric ferrous oxide) into the deionized water to produce the nanofluids. The nanofluids were later atomized with nozzle and sprayed on the test surface to improve the heat dissipation capability of the spray cooling system. Using steady-state method and transient method in the experiment, this study observed the boiling phenomenon when spraying the deionized water and different nanofluids with different concentration on the test surface, and recorded the temperature variation on the test surface. The results were presented in the boiling curve graph and the cooling curve graph. The ultimate objective of this study is to compare the heat dissipation performance of the nanofluids made of major nanoparticles available in the market with that of the deionized water and make an in-depth analysis, hoping the results can be applied to electronic component heat sinks and to solve the problem of rapid increase of thermal power on the electronic components’ unit areas.
目次 Table of Contents
論文審定書....................................................................................................................i
謝 誌.........................................................................................................................ii
中文摘要......................................................................................................................iii
ABSTRAST...................................................................................................................iv
CONTENTS..................................................................................................................vi
LIST OF TABLES.........................................................................................................ix
LIST OF FIGURES........................................................................................................x
NOMENCOLATURE.................................................................................................xiii
CHAPTER 1 INTRODUCTION...................................................................................1
1-1 Background..............................................................................................................1
1-2 Research principle....................................................................................................4
1-3 Literature review....................................................................................................10
1-4 Research purpose...................................................................................................32
CHAPTER 2 NANOFLUIDS......................................................................................34
2-1 The selection of elementary fluids.........................................................................34
2-2 The selection of nanoparticles................................................................................34
2-2 The preparation of the nanofluids..........................................................................35
2-3 The surface tension of the nanofluids....................................................................36
2-4 Correlation of surface tension for nanofluids........................................................38
CHAPTER 3 EXPERIMENTAL EQUIPMENT..........................................................45
3-1 Spray system..........................................................................................................45
3-2 Heating test device.................................................................................................46
3-3 Fluid supply system...............................................................................................46
3-4 Temperature measurement recording instruments.................................................47
3-5 Tool microscope.....................................................................................................48
3-6 Transmission Electron Microscope (TEM) ...........................................................48
3-7 Ultrasonic cleaner...................................................................................................49
CHAPTER 4 EXPERIMENTAL METHODS AND PROCEDURES.........................54
4-1 The preparation of the test surface.........................................................................54
4-2 Experimental method.............................................................................................54
4-3 Experimental procedures........................................................................................58
4-4 Data analysis..........................................................................................................60
CHAPTER 5 THEORETICAL ANALYSIS................................................................63
5-1 The definition of the Weber number (We).............................................................63
5-2 The definition of Reynolds number (Re) ..............................................................65
5-3 Calculation of the Mass Flux(G) ..........................................................................66
5-4 Calculation of the heat flux (q")............................................................................66
5-5 Calculation of the surface temperature..................................................................67
5-6 Calculation of the Heat transfer coefficient (h) ....................................................67
5-7 Analysis of the nanofluids’ characteristics.............................................................67
CHAPTER 6 UNCERTAINTY ANALYSIS................................................................76
CHAPTER 7 RESULTS AND DISCUSSIONS...........................................................83
7-1 Transient state curve ..............................................................................................84
7-1-1 Transient cooling curve of DI water...................................................................84
7-1-2 Transient cooling curve of nanofluids................................................................85
7-1-3 Transient heat transfer coefficient curve of DI water and nanofluids................93
7-2 Steady curve...........................................................................................................93
7-2-1 Steady boiling curve of DI water........................................................................94
7-2-2 Steady boiling curve of nanofluids.....................................................................95
7-2-3 Steady heat transfer coefficient curve of DI water.............................................96
7-2-4 Steady heat transfer coefficient curve of nanofluids..........................................97
7-2-5 q"-h correlation of DI water and nanofluids ......................................................98
7-2-6 Heat transfer coefficient curve of DI water and nanofluids...............................98
7-3 Transient and steady boiling curve........................................................................99
7-4 The enhancement of the heat transfer performance by nanofluids......................100
CAPTER 8 CONCLUSIONS AND RECOMMENDATIONS..................................131
8-1 Conclusions..........................................................................................................131
8-2 Recommendations and Suggestions.....................................................................136
REFERENCES...........................................................................................................138
APPENDIX A............................................................................................................153
參考文獻 References
1. G. E. Moore, "Cramming More Components onto Integrated circuits," Electronics, Vol. 38, 1965, No. 8, pp. 114-117.
2. C. Maxwell, A Tteatise on Electricity and magnetism, 2nd ed, 1904, pp. 435-441.
3. S. Choi, Enhancing Thermal Conductivity of Fluids With Nano-particles, ASME Fluids Engineering division, Vol. 231, 1995, pp. 99-105.
4. J. A. Eastman, S. Choi, S. Li, G. Soyez, L.J. Thompson, and R.J. Di Melfi, Novel Thermal Properties of Nanostrucred Materials, Master science forum, 1999, pp. 312-314.
5. S.P. Jang, and S. Choi, Role of Borwnian Motion in the Enhanced Thermal Conductivity of Nanofluids, Applied Physics Letters, Vol. 84, 2004, pp. 4316-4318.
6. T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, and H.G. Hsu, The Effect of Alumina/Water Nanofluid Particle Size on Thermal Conductivity, Applied Thermal Engineering, Vol. 30, 2010, pp. 2213-2218.
7. L. H. Wachter and N. A. J. Westerling, The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State, Chemical Engineering Science, Vol. 21, 1966, pp. 1047-1056.
8. D. E. Titon, M. R. Pais, and L. C. Chow, High Power Density Spray Cooling, Technical Report, Wright Research & Development Center, 1989, WRDC-TR-89-2082.
9. M. Ghodbane and J. P. Holman, Experimental Study of Spray Cooling with Freon-113, International Journal of Heat and Mass Transfer, Vol. 34, 1991, pp. 1163-1174.
10. M. S. Sehmbey, M. R. Pais, and L. C. Chow, Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling, Journal of Thermophysics and Heat Transfer, Vol. 6, 1992, pp. 505-512.
11. M. R. Pais, L. C. Chow, and E.T. Mahefkey, Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling, Journal of Heat Transfer -Transactions of the ASME, Vol. 114, 1992, pp. 211-219.
12. T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, Pool Boiling of n-Pentane, CFC-113, and Water under Reduced Gravity: Parabolic Flight Experiments with a Transparent Heater, Journal of Heat Transfer -Transactions of the ASME, Vol. 117, 1995, pp. 408-417.
13. M. Kato, Y. Abe, Y. H. Mori, and A. Nagashima, Spray Cooling Characteristics under Reduced Gravity, Journal of Thermophysics and Heat Transfer, Vol. 9, 1995, No. 2, pp. 378-381.
14. K. A. Estes and I. Mudawar, Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces, International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp. 2895-2996.
15. S. Chandra, M. D. Marzo, Y. M. Qiao, and P. Tartarini, Effect of Liquid-Solid Contact Angle on Droplet Evaporation, Fire Safety Journal, Vol. 27, 1996, pp. 141-158.
16. J. Yang, L. C. Chow, and M. R. Pais, Nucleate Boiling Heat Transfer in Spray Cooling, Journal of Heat Transfer -Transactions of the ASME, Vol. 118, 1996, pp. 668-671.
17. I. Mudawar and K. A. Estes, Optimizing and Predicting CHF in SprayCooling of a Square Surface, Journal of Heat Transfer -Transactionsof the ASME, Vol. 118, 1996, pp. 672-679.
18. J. E. Gonzalez and W. Z Black, Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface, Journal of Heat Transfer -Transactions of the ASME, Vol. 119, 1997, pp. 279-287.
19. D. B. John, J. S. Clinton, and I. Mudawar, Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface, International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 247-267.
20. K. Oliphant, B. W. Webb, and M. Q. Mcquay, An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-boiling Regime, Experimental Thermal and Fluid Science, Vol. 18, 1998, pp. 1-10.
21. J. J. Huddle, L. C. Chow, S. Lei, A. Marcos, D. P. Rini, S. J. Lindauer II, M. Bass, and P. J. Delfyett, Thermal Management of Diode Laser Arrays, Semiconductor Thermal Measurement and Management Symposium, Sixteenth Annual IEEE, 2000, pp. 154 -160.
22. J. Y. Murthy, C. H. Amon, K. Gabriel, P. Kumta, S. C. Yao, D. Boyalakuntla, C. C. Hsieh, A. Jain, S. V. Narumanchi, K. Rebello, and C. F. Wu, MEMS-Based Thermal Management of Electronics Using Spray Impingement, Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging, July 8-13, Kauai, Hawaii, USA, 2001, pp. 1-12.
23. G. Aguilar, W. Verkruysse, B. Majaron, L. O. Svaasand, E. J. Lavernia,and J. S. Nelson, Measurement of Heat Flux and Heat TransferCoefficient During Continuous Cryogen Spray Cooling for LaserDermatologic Surgery, IEEE J. Sel. Top. Quantum Electron., Vol. 7,2001, pp. 1013-1021.
24. B. M. Pikkula, J. H. Torres, J. W. Tunnel, and B. Anvari, Cryogen Spray Cooling: Effect of Droplet Size and Spray Density on Heat Removal, Lasers in Surgery and Medicine, Vol. 28, 2001, pp. 103-112.
25. W. Jia and H. H. Qiu, Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling, Experimental Thermal and Fluid Science, Vol. 27, 2003, pp. 829-838.
26. L. Lin and R. Ponnappan, Heat Transfer Characteristics of Spray Cooling in a Closed Loop, International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737-3746.
27. S.S. Hsieh, T. C. Fan, and H. H. Tsai, Spray Cooling Characteristics of Water and R-134a. Part I: Nucleate Boiling, International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712.
28. S.S. Hsieh, T. C. Fan, and H. H. Tsai, Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling, International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724.
29. J. H. Kim, S. M. You, and U. S. Choi, Evaporative Spray Cooling of Plain and Microporouscoated Surfaces, International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 3307-3315.
30. B. Horacek, K.T. Kiger, and J. Kim, Single Nozzle Spray Cooling Heat Transfer Mechanisms, International Journal of Heat and MassTransfer, Vol. 48, 2005, pp. 1425-1438.
31. A. G. Pautsch and T. A. Shedd, Spray Impingement Cooling with Single- and Multiple-nozzle Arrays. Part I: Heat Transfer Data Using FC-72, International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3167-3175.
32. A. G. Pautsch and T. A. Shedd, Spray Impingement Cooling with Single- and Multiple-nozzle Arrays. Part II: Visualization and Empirical Models, International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3176-3184.
33. J. R. Rybicki and I. Mudawar, Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays, International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 5-16.
34. C.C. Hsieh and S.C. Yao, Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces, International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 962-974.
35. S.S. Hsieh and H.H. Tsai, Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling, Archives of Dermatological Research, Vol. 298, 2006, pp. 82-96.
36. B. Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, Spray Angle Effect During Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations, Applied Thermal Engineering, Vol. 26, 2006, pp. 1788-1795.
37. J. E. Guinn and D. Banerjee, Experimental Study of Nanofluids for Droplet Cooling Applications Using Temperature Microsensors, Proceeding of the ASME International Mechanical Engineering Congress and Exposition, No. IMECE2006-14101, Vol. 2, 2006, pp. 251-258.
38. S. -S. Hsieh and C. H. Tien, R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime, International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512.
39. A. Bansal and F.Pyrtle III, Alumina Nanofluid for Spray Cooling Enhancement, Proceeding of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, No. HT2007-32485, Vol. 1, 2007, pp. 797-803.
40. M. Visaria and I. Mudawar, Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux, International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 5269-5278.
41. H. Bostanci, D. P. Rini, J. P. Kizito, and L. C. Chow, Spray Cooling With Ammonia on Microstructured Surfaces: Performance Enhancement and Hysteresis Effect, Journal of Heat Transfer -Transactions of the ASME, Vol. 131, 2009, 071401 (9 pp.).
42. J. Shen, J. A. Liburdy, D. V. Pence, and V. Narayanan, Droplet Impingement Dynamics: Effect of Surface Temperature during Boiling and Non-boiling Conditions, Journal of Physics: Condensed Matter, Vol. 21, 2009, 464133 (14 pp.)
43. R. Srikar, T. Gambaryan-Roisman, C. Steffes, P. Stephan, C. Tropea, and A. L. Yarin, Nanofiber Coating of Surfaces for Intensification of Drop or Spray Impact Cooling, International Journal of Heat and Mass Transfer, Vol. 52, 2009, pp. 5814-5826.
44. G. Duursma, K. Sefiane, and A. Kennedy, Experimental Studies of Nanofulid Droplets in Spray Cooling, Heat Transfer Engineering, Vol. 30, 2009, Issue 13, pp. 1108-1120.
45. M.N. Pantzali, A.A. Mouza, S.V. Paras, Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE), Chemical Engineering Science, Vol. 64,2009, pp. 3290-3300.
46. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performancein Non-boiling Regime, Experimental Thermal and Fluid Science, Vol.34, 2010, pp. 933-942.
47. D. S. Zhu, J. Y. Sun, S. D. Tu, and Z. D. Wang, Experimental Study of Non-boiling Heat Transfer by High Flow Rate Nanofluids Spray, The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Vol. 1207, 2010, pp. 476-482.
48. H. Bellerova, M. Pohanka, M. Raudensky, and A. A. Tseng, Spray Cooling by Al2O3 and TiO2 Nanoparticles in Water, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 12th IEEE Intersociety Conference, 2010, doi:10.1109/ITHERM.2010. 5501333.
49. S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, and S.M. You, Pool Boiling Characteristics of Low Concentration Nanofluids, International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 972-981.
50. S. a. d. Wiesche, U. Bardas, and S. Uhkötter, Boiling Heat Transfer on Large Diamond and SiC Heaters: The Influence of Thermal Wall Properties, International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 1886-1895.
51. H. Bellerova, A. A. Tseng, M. Pohanka, and M. Raudensky, SprayCooling by Solid Jet Nozzles Using Alumina/Water Nanofluids, International Journal of Thermal Sciences, 2011, doi:10.1016/j. ijthermalsci.2011.10.017.
52. H. Bellerova and M. Pohanka, Spray Cooling by Multi-walled CarbonNanotubes and Fe Nanoparticles, International Journal of Computational Methods and Experimental Measurements, Computational Method and Experimental Measurements XV, 2011, pp. 293-304.
53. R. H. Chen, T.X. Phuoc, and D. Martello, Surface Tension of Evaporating Nanofluid Droplets, International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 2459-2466.
54. T. Okawa, K. Nagano, and T. Hirano, Boiling Heat Transfer During Single Nanofluid Drop Impacts onto A Hot Wall, Experimental Thermal and Fluid Science, Vol. 36, 2012, pp. 78-85.
55. N. Putra, W.N. Septiadi, H. Rahman, and R. Irwansyah, Thermal Performance of Screen Mesh Wick Heat Pipes with Nanofluids, Experimental Thermal and Fluid Science, Vol. 40, 2012, pp. 10-17.
56. P. Selvakumar, and S. Suresh, Use of Al2O3-Cu/Water Hybrid Nanofluid in and Electronic Heat Sink, IEEE Transactions on Components, Packaging and Manufacturing Technology , Vol. 2, 2012, pp. 1600-1607.
57. T. Lee, J.H. Lee, and Y.H. Jeong, Flow Boiling Critical Heat Flux Characteristics of Magnetic Nanofluid at Atmospheric Pressure and Low Mass Flux Conditions, International Journal of Heat and Mass Transfer, Vol. 56, 2013, pp. 101-106.
58. H. Maddah, M. Rezazadeh, M. Maghsoudi, and S. Nasirikokhdan, The Effect of Silver and Aluminum Oxide Nanoparticles on Thermophysical Properties of Nanofluids, Journal of Nanostructure in Chemistry, Vol. 3, 2013, 28.
59. S.S. Hsieh, Y.F. Hsu, and M.L. Wang, A Microspray-Based Cooling System for High Powered LEDs, Energy Conversion and Management, Vol. 78, 2014, pp. 338-346.
60. R.G. Jackson, M. Kahani, N. Karwa, A. Wu, R. Lamb, R. Taylor, and G. Rosengarten, Effect of Surface Wettability on Carbon Nanotube Water-Based Nanofluid Droplet Impingement Heat Transfer, Journal of Physics: Conference Series, Vol. 525, 2014, 012024.
61. M.M. Sarafraz, and F. Hormozi, Qualitative Investigation of the Convective Boiling Heat Transfer of Dilute Al2O3-Water/Glycerol Solution Inside the Vertical Annuli, Bulgarian Chemical Communications, Vol. 46, 2014, pp. 645-651.
62. J.M. Jha, S.V. Ravikumar, A.M. Tiara, I. Sarkar, and S.K. Pal, Ultrafast Cooling of a Hot Moving Steel Plate by Using Alumina Nanofluid Based Air Atomized Spray Impingement, Applied Thermal Engineering, Vol. 75, 2015, pp. 738-747.
63. Yong-Zhen Technomaterial CO., LTD, Internet, Cited 06/08/'11, Available from: http://www.qfnano.url.tw/product.html.
64. H.C. Tsai, An Experimental Study of Jet Impingement and Spray Cooling , PhD Dissertation, National Sun Yat-Sen University, 2006.
65. B. C. Pak and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles, Experimental Heat Transfer, Vol. 2, 1998, pp. 151-170.
66. J.M. Smith, H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, New York, 1987.
67. H.C. Brinkman, The Viscosity of Concentrated Suspensions and Solutions, Journal of Chemical Physics, Vol. 20, 1952, pp. 571-580.
68. A. Einstein, Investigation on the Theory of Motion, Dover, New York, 1956.
69. H. U. Kang, S. H. Kim, and J. M. Oh, Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume, Experimental Heat Transfer, Vol. 19, No. 3, 2006, pp. 181-191.
70. E. Yamada and T. Ota, Effective Thermal Conductivity of Dispersed Materials, Wärme-und Stoffübertragung, Vol. 13, No. 1-2, 1980, pp. 27-37.
71. R.L. Hamilton and O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Industrial & Engineering Chemistry Fundamentals, Vol. 1, No. 3, 1962, pp. 187-191.
72. X. Zhang, H. Gu, and M. Fujii, Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, Journal of Applied Physics, Vol. 100, 2006, 044325.
73. S. Kline and F. A. McClintock, "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
74. R. J. Moffat, "Describing the Uncertainties in Experimental Results, "Experimental Thermal and Fluid Science, Vol. 104, 1988, pp. 3-17.
75. J. R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, California, 1997, pp. 49-67.
76. I.L. Ferreira, J.E. Spinelli, J.C. Pires, and A. Garcia, The Effect of Melt Temperature Profile on the Transient Metal/Mold Heat Transfer Coefficient During Solidification, Materials Science and Engineering A, Vol. 408, 2005, pp. 317-325.
77. C.Y. Leu, Department of Mechanical and Electro-Mechanical Engineering, MS Dissertation, National Sun Yat-Sen University, 2012.
78. H.S. Ahn, M.H. Kim, The Boiling Phenomenon of Alumina Nanofluid Near Critical Heat Flux, International Journal of Heat and Mass Transfer, Vol. 62, 2013, pp. 718-728.
79. H. Kim, H.S. Ahn, and M.H. Kim, On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids, Journal of Heat Transfer, Vol. 132, 2010, 061501-1-11.
80. K.J. Park, D. Jung, and S.E. Shim, Nucleate Boiling Heat Transfer in Aqueous Solutions with Carbon Nanotubes up to Critical Heat Fluxes, International Journal of Multiphase Flow, Vol. 35, 2009, pp. 525-532.
81. C. Gerardi, J. Buongiorno, L. Hu, and T. McKrell, Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena, Nanoscale Research Letters, Vol. 6, 2011, 232.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code