Responsive image
博碩士論文 etd-0621115-145314 詳細資訊
Title page for etd-0621115-145314
論文名稱
Title
脈衝雷射於四乙基正矽酸鹽中合成碳氧氫摻雜矽奈米結晶和球狀石墨烯
C-O-H-doped Si nanocrystals and spherulitic graphene by pulsed laser ablation of SiC in TEOS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-11
繳交日期
Date of Submission
2015-07-27
關鍵字
Keywords
四乙基正矽酸鹽、石墨烯、矽奈米結晶、碳化矽、脈衝雷射剝熔蝕
Si nanocrystal, silicon carbide, graphene, pulsed laser ablation, TEOS
統計
Statistics
本論文已被瀏覽 5682 次,被下載 23
The thesis/dissertation has been browsed 5682 times, has been downloaded 23 times.
中文摘要
本研究使用脈衝雷射剝熔蝕置於四乙基正矽酸鹽(TEOS)液體的碳化矽(6H-SiC)單晶片,合成含Si-C-O-H成分的鑽石態奈米凝聚物/微粒和包裹亂層石墨烯。從分析式電子顯微鏡觀察得知這種奈米凝聚物/微粒有不同的晶格常數(0.523-0.548 nm),以至於有特徵拉曼光譜(487, 511 cm-1)、光致螢光(532, 603 nm)、和紫色吸收光譜(對應最小能隙值為3.1eV)。這種富含矽的奈米微粒具來自缺陷團簇(defect cluster) 的順晶結構分布(paracrystalline distribution)和衝擊引起的4x(111)的斷層。一般來說,Si-C合金的鑽石態微粒有發達的~{111}和~{110}鄰近表面(例如311, 331, 123),以特定的(hkl)聚簇成特殊晶界,即(110)70.5º的扭轉晶界和 [111](123)/(011) 傾轉晶界。而歷經成分過冷(constitutional supercooling) 以至於 Si-O-H摻雜的亂層石墨烯球晶,則具有0.341和0.366nm兩種層間距。至於尺寸達幾微米的莫桑石(Moissanite,即3C-SiC)和鑽石多晶體,則具有固相燒結的特徵三接點(triple junction),以及特徵拉曼光譜和光致螢光光譜。矽結晶的高溫相,例如立方晶和四方晶的方矽石(cristobalite),並不容易在TEOS的動態 脈衝雷射剝熔蝕環境中存在。
Abstract
Pulsed laser ablation of 6H-type SiC single crystal wafer in TEOS was employed to synthesize diamond-type nanocondensates/particulates with varied Si-C-O-H content and turbostratic graphene coverage. Analytical electron microscopic observations indicated that such nanocondensates/particulates have varied lattice parameters (0.523-0.548 nm) with accompanied modification of optoelectronic properties, i.e. Raman shift (487, 511 cm-1), photoluminescence (532, 603 nm)and violet light absorbance corresponding to a minimum band gap of 3.1 eV. The Si-rich nanoparticles have paracrystalline distribution of defect clusters and occasional shock-induced 4x(111) faulting. In general, the Si-C alloyed diamond type particles have well-developed ~{111} and ~{110} vicinal surfaces (such as 311, 331, 123) for (hkl)-specific coalescence as special grain boundaries, i.e. (110) 70.5º twist boundary and [111](123)/(011) tilt boundary. Turbostratic graphene also occurred as folding belts and spherulite which typically retained bimodal basal spacings 0.341 nm and 0.366 nm after Si-O-H doping and/or layer corrugations upon constitutional supercooling. Moissanite (3C-SiC) and diamond polycrystals up to several microns in size with triple junctions, a characteristic of solid-state sintering, were also identified by scanning electron microscopy coupled with Raman and PL spectroscopy. High-temperature formation of crystalline silica, such as cristobalite with cubic and/or tetragonal structures, was not favored in TEOS environment.
目次 Table of Contents
目錄

論文審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
目錄 vi
圖目錄 vii
附錄目錄 xi

壹、 前言 1
貳、 實驗流程 4
參、 實驗步驟及方法 5
肆、 實驗結果 8
伍、 討論 15
陸、 結論 21
柒、 參考文獻 22
參考文獻 References
Adachi S., “Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information” Springer, 1999.
Alkis S., Okyay A.K., Ortaç B., “Post-treatment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: Toward blue luminescent nanocrystal generation” J. Phys. Chem. C 116 (2012) 3432-3436.
Anders E., Zinner E., “Interstellar grains in primitive meteorites: diamond, silicon carbide and graphite” Meteoritics and Planetary Science 28 (1993) 490-514.
Boyle E., “FT-IR measurement of interstitial oxygen and substitutional carbon in silicon wafers” Thermo Fisher Scientific, 2008 Application Note: 50640.
Brearley A.J., Jones R.H., “Chonditic meteorites” Ch. 3 in Papike J.J. (ed.), Reviews in Mineralogy, Vol. 36, Mineralogical Society of America, Washington D.C., 1998.
Bryan J.D., Gamelin D.R., “Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications” Prog. Inorg. Chem. 54 (2005) 47-126.
Carroll M.S., “The interaction of silicon self-interstitials and substitutional carbon in silicon based heterostructures” PhD thesis, Princeton University (2001).
Chen C.H., Huang C.N., Chen S.Y., Shen P., “Crystallographic shear of polymorphic TiO2 nanocondensates with enhanced Cr2O3 dissolution via pulsed laser ablation” J. Nanoparticle Res. 13 (2011) 3683-3692.
Chen T., Skinner B., Xie W., Shklovskii B.I., Kortschagen U.R., “Carrier transport in films of alkyl-ligand-terminated silicon nanocrystals” J. Phys. Chem. C 118 (2014) 19580-19588.
Chiu K.A., Tian J.S., Wu Y.H., Peng C.Y., Chang L., “Stress reduction of (111) homoepitaxial diamond films on nickel-coated substrate” Surface & Coatings Technology 259 (2014) 358-362.
Cui Y.X., Zhang J.G., Sun F.H., Zhang Z.M., “Si-doped diamond films prepared by chemical vapour deposition” Trans. Nonferrous Met. Soc. China 23 (2013) 2962-2970.
Daulton T.L., Bernatowicz T.J., Lewis R.S., Messenger S., Stadermann F.J., Amari S., “Polytype distribution of circumstellar silicon carbide: microstructural characterization by transmission electron microscopy” Geochim. Et Cosmochim. Acta 67 (2003) 4743-4767.
Elliot R.P., “Constitution of Binary Alloys” McGraw-Hill, New York (1965) 227,
Erwin S.C., Zu L., Haftel M. I., Efros A.L., Kennedy T.A., Norris D.J., “Doping semiconductor nanocrystals” Nature 436 (2005) 91-94.
Galashev A.E. “Growth of a Si nanocrystal in an oxygen atmosphere. Computer simulation” Crystallography Reports 47 (2002) S169-S176
Gresback R., Murakami Y., Ding Y., Yamada R., Okazaki K., Nozaki T., “Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition” Langmuir, 29 (2013) 1802-1807.
Gresback R., Kramer N.J., Ding Y., Chen T., Kortshagen U.R., Nozaki T., “Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors” ACS Nano, 8 (2014) 5650-5656.
Hannah D.C., Yang J., Podsiadlo P., Chan M. K.Y., Demortière A., Gosztola D.J., Prakapenka V.B., Schatz G.C., Kortshagen U., Schaller R.D., “On the origin of photoluminescence in silicon nanocrystals: Pressure-dependent structural and optical studies” Nano Letters 12 (2012) 4200-4205.
Harris P.J.F., “Carbon nanotubes and related structures – new materials for the twenty-first century” Cambridge University Press, Cambridge (1999).
Hartman P., Perdok W.G., “On the relations between structure and morphology of crystals. I.” Acta Cryst. 8 (1955a) 49-53.
Hartman P., Perdok W.G., “On the relations between structure and morphology of crystals. II.” Acta Cryst. 8 (1955b) 521-524.
Hartman P., Perdok W.G., “On the relations between structure and morphology of crystals. III.” Acta Cryst. 8 (1955c) 525-529.
Huseby C., Borom M.P., Greskovich C., “High temperature characterizationrization of silica-based cores for superalloys” Am. Ceram. Soc. Bull., 58 (1979) 448–452.
Kawahara C., Suda J., Kimoto T., “Identification of dislocations in 4H-SiC epitaxial layers and substrates using photoluminescence imaging” Jap. J. Apply. Phys. 53 (2014) 020304-1-3.
Kawanishi S., Yoshikawa T., Tanaka T., “Equilibrium phase relationship between SiC and a liquid phase in the Fe-Si-C system at 1523–1723 K” Materials Transactions, The Japan Institute of Metals 50 (2009) 806-813.
Kim R., Qin W., Wei G., Wang G., Wang L., Zhang D., Zheng K., “Contribution of SiC and SiO2 to photoluminescence from SiC-SiO2 nanocables grown by thermal decomposition of methanol” J. Nanosci. Nanotechnol. 10 (2010) 2009-2012.
Kröger F.A., Vink H.J., “Relations between the concentrations of imperfections in crystalline solids” Solid State Phys. 3 (1956) 307-435.
Launer P.J., “Infrared analysis of organosilicon compounds: spectra-structure correlations” in Silicone Compounds Register and Review (1987)100-103.
Lauretta D.S., McSween H.Y., “Meteorite and the early solar system II” Tucson: University of Arizona Press ; Houston : In collaboration with Lunar and Planetary Institute, cop. 2006.
Lee S.T., Peng H.Y., Zhou X.T., Wang N., Lee C.S., Bello I., Lifshitz Y., “A nucleation site and mechanism leading to epitaxial growth of diamond films” Science 287 (2000) 104-106.
Leung I.S. “Silicon carbide cluster entrapped in a diamond from Fuxian” China. Am. Mineral. 75 (1990) 1110-1119.
Leung I., Guo W., Friedman I., Gleason J., “Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian” Nature 346 (1990a) 352-354.
Leung I., Guo W., Friedman I., Gleason J., “Correction: Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian” Nature 346 (1990b) 874.
Lim H., Park S., Cheong H., “Photoluminescence of natural diamonds” J. Korean Phys. Soc. 48 (2006) 1556-1559.
Lin B.C., Shen P., Chen S.Y., “Core-shell cermet condensates by pulsed laser ablation on Zn in TEOS” Journal of Nanoparticle Research 16 (2014) 2444.
Lin C.C., Shen P., “Sol-gel synthesis of zinc orthosilicate, Journal of Non-Crystalline” Solids Volume 171, Issue 3 (1994) 281–289.
Lin S.S., Chen S.Y., “On the straight graphene nanoribbons/nanoplates with in-plane corrugations and special boundaries by pulsed laser ablation of graphite in liquid nitrogen” in review
Lin T.Y., Lin S.S., Chen S.Y., Shen P., “Pulsed laser ablation synthesis of magnesiowüstite based phases with special defect clusters, interfaces and internal stress: Implications for natural occurrence and engineering application” CrystEngComm 17 (2015) 3468-3477.
Llorca-Isern N., Tartera J., Espanol M., Marsal M., Bertran G., Castel S., “Internal features of graphite in cast irons. Confocal microscopy: useful tool for graphite growth imaging” Micron 33 (2002) 357-364.
Mansour N., Momeni A., Karimzadeh R., Amini M., “Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide” Optical Mater. Express 2 (2012) 740-748.
Moissan H., “Étude du siliciure de carbone de la météorite Canon Diablo” Comptes Rendus Hebdomadaire vol.CXL (1905) 405-406.
Nakashima S., “Raman intensity profiles and the stacking structure in SiC polytypes” Solid State Communications 80 (1991) 21-24.
Nesheva D., Raptis C., Perakis A., Bineva I., Aneva Z., Levi Z., Alexandrova S., Hofmeister H., “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films” J. Apply. Phys. 92 (2002) 4678-4683.
Occelli F., Loubeyre P., Letoullec R. “Properties of diamond under hydrostatic pressure up to 140 GPa” Nat. Mater. 2 (2003) 151-154.
Ossicini S., Iori F., Degoli E., Luppi E., Magri R., Cantele G., Trani F., Ninno D., “P and B single- and co-doped silicon nanocrystals: Formation and activation energies, electronic and optical properties” in: IEEE Conference Proceedings "Group IV Photonics", p. 60 (2005).
Ossicini S., Pavesi L., Priolo F., “Light emitting silicon for microphotonics” STMP 194, Springer-Berlin (2003)
Park Y.S., “SiC materials and devices, in semiconductors and semimetals” Vol. 52, (Series Eds.: Willardson R.K, Weber E.R.), New York: Academic Press (1998) pp.1-18.
Pinacho E., Jaraíz M., Gossmann H.J., Gilmer G.H., Benton J.L., Werner P., “The effect of carbon/self-interstitial clusters on carbon diffusion in silicon modeled by kinetic Monte Carlo simulations” Mat. Res. Soc. Symp. 610 (2000) B7.2.1.-B7.2.6.
Pluchery O., Costantini J.M., “Infrared spectroscopy characterization of 3C–SiC epitaxial layers on silicon” J. Phys. D: Appl. Phys. 45 (2012) 495101.
Prawer S, Nemanich RJ., “Raman spectroscopy of diamond and doped diamond,” Philos Trans A Math Phys Eng Sci. 362 (1824) (2004) 2537-2565.
Pyzik A.J., Hart A.M., “The use of phase studies in the development of whiskers and whisker-reinforced ceramics, Ch. 5 in Phase Diagrams in Advanced Ceramics” Alper A.M. (ed.), Academic Press, San Diego (1995)
Ray S.C., Okpalugo T.I.T., Pao C.W., Tsai H.M., Chiou J.W., Jan J.C., Pong W.F., Papakonstantinou P., McLaughlin J.A., Wang W.J., “Electronic structure and photoluminescence study of silicon doped diamond like carbon (Si:DLC) thin films” Materials Research Bulletin 40 (2005) 1757-1764.
Saltzberg M.A., Bors S.L., Bergna H., Winchester S.C., “Synthesis of chemically stabilized cristobalite” J. Am. Ceram. Soc., 75 (1992) 89-95.
Scholz R., Gösele U., Huh J.Y., Tan T.Y., “Carbon-induced undersaturation of silicon self interstitials” Appl. Phys. Lett. 72 (1998) 200-202.
Song L.W., Zhan X.D., Benson B.W., Watkins G.D., “Bistable interstitial-carbon-substitutional-carbon pair in silicon” Phys. Rev. B 42 (1990) 5765-5783.
Sun Z., Shi J.R., Tay B.K., Lau, S.P., “UV Raman characteristics of nanocrystalline diamond films with different grain size” Diamond Relat. Mater. 9 (2000) 1979-1983.
Sunagawa I., “Growth and morphology of diamond crystal under stable and metastable conditions” J. Crystal Growth 99 (1990) 1156-1161.
Tairov, Y.M., Tsvetkov V.F., in Handbook on Electrotechnical Materials Eds. Koritskii, Yu.V., V.V. Pasynkov, B.M. Tareev, Vol.3, Sec.19, "Semiconductor Compounds AIV BIV" Energomashizdat, Leningrad (1988) 446-471.
Tan T.Y., Gösele U., “Point defects, diffusion processes, and swirl defect formation in silicon” Appl. Phys. A: Solids Surf. 37 (1985) 1-17.
Ullmann M., Friedlander S.K., Schmidt-Ott A., “Nanoparticle formation by laser ablation” Journal of Nanoparticle Research 4 (2002) 499-509.
Ushizawa K., Watanabe K., Ando T., Sakaguchi I., Nishitani-Gamo M., Sato Y., Kanda, H., “Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond” Diamond Relat. Mater. 7 (1998) 1719-1722.
Vaccaro L., Sciortino L., Messina F., Buscarino G., Agnello S., Cannas M., “Luminescent silicon nanocrystals produced by near-infrarednanosecond pulsed laser ablation in water” Applied Surface Science 302 (2014) 62-65.
Vasiliauskas R., “Sublimation growth and performance of cubic silicon carbide” Linkoping Studies in Science and Technology Dissertation 1435 (2012) 3-5.
Wasyluk J., Perova T.S., Kukushkin S.A., Osipov A.V., Feoktistov N.A., Grudinkin S.A., “Raman investigation of different polytypes in SiC thin films grown by solid-gas phase epitaxy on Si (111) and 6H-SiC substrates, Materials Science Forum” 645-648 (2010) 359 -362.
Werner P., Gossmann H., Jacobson D.C., Gösele U., “Carbon diffusion in silicon” Appl. Phys. Lett. 73 (1998) 2465-2467.
Wright N.G., Horsfall A.B., “Silicon carbide: the return of an old friend” Material Matters 4 [4] (2009) 43-45.
Wu C.H., Chen S.Y., Shen P., “Polyynes and flexible Si-H doped carbon nanoribbons by pulsed laser ablation of graphite in tetraethyl orthosilicate” Carbon 67 (2014a) 27-37.
Wu C.H., Chen S.Y., Shen P., “C-H doped anatase nanospheres with disordered shell and planar defects by pulsed laser ablation of bulk Ti in tetraethyl orthosilicate” CrystEngComm. 16 (2014b) 2220-2229.
Yang X., Han G., Zhang X., Du P., Ding Z., Zhang Z., “Photoluminescence of nanometer SiC powder” J. Mater. Sci. Technol. 13 (1997) 333-335.
Ziambaras, E., Schröder, E., “Theory for structure and bulk modulus determination” Phys . Rev. B 68 (2003) 06112-1 – 064112-7
簡國明,洪長春,吳典熹,王永銘,藍怡平 “奈米二氧化鈦專利地圖及分析” 國科會科學技術資料中心「奈米科技專利研究系列」第二輯 (2003).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code