Responsive image
博碩士論文 etd-0621115-154800 詳細資訊
Title page for etd-0621115-154800
論文名稱
Title
原子力顯微鏡對仿生聚多巴胺的研究
Investigation of Bio-Inspired Polydopamine Using Atomic Force Microscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-21
關鍵字
Keywords
黏著力、聚二甲基矽氧烷、聚多巴胺、圖案化、原子力顯微鏡
patterning, AFM, polydopamine, polydimethylsiloxane, adhesion
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
多巴胺(dopamine)在鹼性三羥甲基氨基甲烷(Tris)緩衝溶液及氧氣存在的環境下會發生自氧化和自聚合的反應,形成聚多巴胺粒子,並可以藉由共價或非共價的作用力吸附於基材上。此實驗利用雲母表面具有原子級平坦的特性,在其表面用浸塗(Dip-coating)的方式修飾聚多巴胺薄膜,並以原子力顯微鏡(AFM)觀察聚多巴胺薄膜修飾在雲母表面上的形貌以及粗糙度,進而分析單層薄膜生長模式及生長機制、X 光光電子光譜儀特性分析、及接觸角儀測量表面親疏水性。實驗結果發現大約在300 秒可以形成第一層完整連續的聚多巴胺薄膜,表面粗糙度和接觸角與原本的雲母相比也有顯著的改變。另一方面,我們也在原子力顯微鏡的探針上修飾聚多巴胺,利用此探針來偵測聚多巴胺與矽晶片、高定向熱裂解石墨
稀、雲母…等不同基材的作用力,發現修飾過的探針與高定向熱烈解石墨稀有最強的作用力,推測由於聚多巴胺的芳香環與高定向熱裂解石墨稀sp2 平面結構會產生較強的π-π 交互作用力。同時也藉由表面圖案化的方式,控制聚多巴胺薄膜於聚二甲基矽氧烷上的生長區域,成功地讓金奈米粒子與銀奈米粒子有選擇性地修飾。
Abstract
Dopamine solution will conduct autoxidation and self-polymerization to form polydopamine particles in alkaline tris-(hydroxymethyl)aminomethane (Tris) buffer solution. At the same time, the ploydopamine deposition onto various substrates via
covalent bond or non-covalent bond such as hydrogen bond, electrostatic interaction, π-π interaction, van der waal interaction. In this study, we used atomically flat mica to investigate the growth mode and the growth mechanism of polydopamine by atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and contact angle measurment. On the other hand, we also used polydopamine-modified AFM tip to
detect the interaction with various substrates and designed surface patterning on polydimethylsiloxane (PDMS). The results show that the monolayer of polydopamine film is completed within 300 sec and the roughness had significantly changed compared with bare mica. The polydopamine-modified AFM tip had the strongest interaction with
Highly Oriented Pyrolytic Graphite (HOPG) due to the strong π-π interaction between the aromatic rings structure on polydopamine and the planar structure of sp2 orbital on HOPG. Finally, the surface patterning on PDMS by polydopamine successfully modified Au nanoparticles and Ag nanoparticles on specific area.
目次 Table of Contents
中文摘要 ..................................................................................................................i
Abstract .................................................................................................................. ii
第壹章 緒論 .................................................................................................................. 1
1-1 前言 ..................................................................................................................... 1
1-2 聚多巴胺 ............................................................................................................. 4
1-3 研究動機 ............................................................................................................. 8
第貳章 儀器與實驗...................................................................................................... 9
2-1 原子力顯微鏡 ..................................................................................................... 9
2-1-1 簡介 ............................................................................................................. 9
2-1-2 原理 ............................................................................................................. 9
2-1-3 掃描模式 ................................................................................................... 11
2-1-4 使用儀器與參數設定 ............................................................................... 13
2-1-5 力距離曲線 ............................................................................................... 14
2-1-6 接觸面積理論 ........................................................................................... 16
2-2 接觸角儀 ........................................................................................................... 19
2-3 X 光光電子光譜儀 ............................................................................................ 22
第參章 聚多巴胺與不同基材的作用力.................................................................... 24
3-1 前言 ................................................................................................................... 24
3-2 實驗材料與方法 ............................................................................................... 26
3-3 結果與討論 ....................................................................................................... 28
3-3-1 AFM 觀察基材表面形貌與水接觸角 ....................................................... 28
3-3-1 拉曼光譜 ................................................................................................... 29
3-3-1 修飾聚多巴胺探針與基材作用力 ........................................................... 30
3-4 結論 ................................................................................................................... 39
第肆章 聚多巴胺沉積在雲母表面的生長機制........................................................ 40
4-1 前言 ................................................................................................................... 40
4-2 實驗材料與方法 ............................................................................................... 42
4-3 結果與討論 ....................................................................................................... 44
4-3-1 AFM 觀察表面形貌變化 ........................................................................... 44
4-3-2 水接觸角的測量 ....................................................................................... 52
4-3-3 X 光光電子光譜儀特性分析..................................................................... 54
4-4 結論 ................................................................................................................... 62
第伍章 聚多巴胺在聚甲基矽氧烷表面的圖案化.................................................... 63
5-1 前言 ................................................................................................................... 63
5-1-1 金奈米粒子 ............................................................................................... 63
5-1-2 銀奈米粒子 ............................................................................................... 64
5-2 實驗材料與方法 ............................................................................................... 65
5-3 結果與討論 ....................................................................................................... 67
5-3-1 光學影像與紫外光-可見光吸收光譜 (UV-Vis) ...................................... 67
5-3-2 AFM 觀察表面形貌 ................................................................................... 68
5-3-3 表面黏著力分析 ........................................................................................ 74
5-3-4 楊氏模數(Young’s modulus)分析 ............................................................. 75
5-4 結論 ................................................................................................................... 77
第陸章 結論................................................................................................................ 78
第柒章 參考文獻........................................................................................................ 79
參考文獻 References
1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105 (4), 1103-1170.
2. Croll, T. I.; O'Connor, A. J.; Stevens, G. W.; Cooper-White, J. J., Controllable Surface Modification of Poly(lactic-co-glycolic acid) (PLGA) by Hydrolysis or Aminolysis I:  Physical, Chemical, and Theoretical Aspects. Biomacromolecules 2004, 5 (2), 463-473.
3. Zasadzinski, J.; Viswanathan, R.; Madsen, L.; Garnaes, J.; Schwartz, D., Langmuir-Blodgett films. Science 1994, 263 (5154), 1726-1733.
4. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318 (5849), 426-430.
5. Liu, Y.; Ai, K.; Lu, L., Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114 (9), 5057-5115.
6. Silverman, H.; Roberto, F., Understanding Marine Mussel Adhesion. Mar. Biotechnol. 2007, 9 (6), 661-681.
7. d'Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T., Chemical and Structural Diversity in Eumelanins: Unexplored Bio-Optoelectronic Materials. Angew. Chem. Int. Ed. 2009, 48 (22), 3914-3921.
8. Chen, C.-T.; Ball, V.; de Almeida Gracio, J. J.; Singh, M. K.; Toniazzo, V.; Ruch, D.; Buehler, M. J., Self-Assembly of Tetramers of 5,6-Dihydroxyindole Explains the Primary Physical Properties of Eumelanin: Experiment, Simulation, and Design. ACS Nano 2013, 7 (2), 1524-1532.
9. Bernsmann, F.; Ponche, A.; Ringwald, C.; Hemmerlé, J.; Raya, J.; Bechinger, B.; Voegel, J.-C.; Schaaf, P.; Ball, V., Characterization of Dopamine−Melanin Growth on Silicon Oxide. J. Phys. Chem. C 2009, 113 (19), 8234-8242.
10. Sapurina, I.; Riede, A.; Stejskal, J., In-situ polymerized polyaniline films: 3. Film formation. Synth. Met. 2001, 123 (3), 503-507.
11. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Elucidating the Structure of Poly(dopamine). Langmuir 2012, 28 (15), 6428-6435.
12. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H., Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22 (22), 4711-4717.
13. Liebscher, J.; Mrówczyński, R.; Scheidt, H. A.; Filip, C.; Hădade, N. D.; Turcu, R.; Bende, A.; Beck, S., Structure of Polydopamine: A Never-Ending Story? Langmuir 2013, 29 (33), 10539-10548.
14. Pujari, S. P.; Scheres, L.; Marcelis, A. T. M.; Zuilhof, H., Covalent Surface Modification of Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53 (25), 6322-6356.
15. Ball, V.; Nguyen, I.; Haupt, M.; Oehr, C.; Arnoult, C.; Toniazzo, V.; Ruch, D., The reduction of Ag+ in metallic silver on pseudomelanin films allows for antibacterial activity but does not imply unpaired electrons. J. Colloid Interface Sci. 2011, 364 (2), 359-365.
16. Xu, H.; Shi, X.; Ma, H.; Lv, Y.; Zhang, L.; Mao, Z., The preparation and antibacterial effects of dopa-cotton/AgNPs. Appl. Surf. Sci. 2011, 257 (15), 6799-6803.
17. Fei, B.; Qian, B.; Yang, Z.; Wang, R.; Liu, W. C.; Mak, C. L.; Xin, J. H., Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 2008, 46 (13), 1795-1797.
18. Kang, K.; Choi, I. S.; Nam, Y., A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials 2011, 32 (27), 6374-6380.
19. Bettinger, C. J.; Bruggeman, J. P.; Misra, A.; Borenstein, J. T.; Langer, R., Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 2009, 30 (17), 3050-3057.
20. Ou, J.; Wang, J.; Zhou, J.; Liu, S.; Yu, Y.; Pang, X.; Yang, S., Construction and study on corrosion protective property of polydopamine-based 3-layer organic coatings on aluminum substrate. Prog. Org. Coat. 2010, 68 (3), 244-247.
21. Chen, S.; Chen, Y.; Lei, Y.; Yin, Y., Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces. Electrochem. Commun. 2009, 11 (8), 1675-1679.
22. E, S.; Shi, L.; Guo, Z., Tribological properties of self-assembled gold nanoparticles on silicon with polydopamine as the adhesion layer. Appl. Surf. Sci. 2014, 292 (0), 750-755.
23. Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J., Characterization of Polydopamine Thin Films Deposited at Short Times by Autoxidation of Dopamine. Langmuir 2013, 29 (27), 8619-8628.
24. d'Ischia, M.; Napolitano, A.; Pezzella, A., 5,6-Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. Eur. J. Org. Chem. 2011, 2011 (28), 5501-5516.
25. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Perspectives on poly(dopamine). Chem. Sci. 2013, 4 (10), 3796-3802.
26. Akhremitchev, B. B.; Walker, G. C., Finite Sample Thickness Effects on Elasticity Determination Using Atomic Force Microscopy. Langmuir 1999, 15 (17), 5630-5634.
27. Attard, P.; Parker, J. L., Deformation and adhesion of elastic bodies in contact. Phys. Rev. A 1992, 46 (12), 7959-7971.
28. Hopcroft, M. A.; Nix, W. D.; Kenny, T. W., What is the Young's Modulus of Silicon? J. Microelectromech. Syst. 2010, 19 (2), 229-238.
29. Vlassak, J. J.; Nix, W. D., A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J. Mater. Res. 1992, 7 (12), 3242-3249.
30. Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P., Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53 (2), 314-326.
31. Johnson, K. L.; Kendall, K.; Roberts, A. D., Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. A 1971, 324 (1558), 301-313.
32. Yuan, Y.; Lee, T. R., Contact angle and wetting properties. Springer: 2013; pp 3-34.
33. Waite, J. H., Surface chemistry: Mussel power. Nat Mater 2008, 7 (1), 8-9.
34. Guardingo, M.; Bellido, E.; Miralles-Llumà, R.; Faraudo, J.; Sedó, J.; Tatay, S.; Verdaguer, A.; Busqué, F.; Ruiz-Molina, D., Bioinspired Catechol-Terminated Self-Assembled Monolayers with Enhanced Adhesion Properties. Small 2014, 10 (8), 1594-1602.
35. Anderson, T. H.; Yu, J.; Estrada, A.; Hammer, M. U.; Waite, J. H.; Israelachvili, J. N., The Contribution of DOPA to Substrate–Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films. Adv. Funct. Mater. 2010, 20 (23), 4196-4205.
36. Lee, H.; Scherer, N. F.; Messersmith, P. B., Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U.S.A 2006, 103 (35), 12999-13003.
37. Lu, Q.; Danner, E.; Waite, J. H.; Israelachvili, J. N.; Zeng, H.; Hwang, D. S., Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface 2013, 10 (79).
38. Hutter, J. L.; Bechhoefer, J., Calibration of atomic‐force microscope tips. Rev. Sci. Instrum. 1993, 64 (7), 1868-1873.
39. Proksch, R.; Schäffer, T. E.; Cleveland, J. P.; Callahan, R. C.; Viani, M. B., Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology 2004, 15 (9), 1344.
40. Ryu, J.; Ku, S. H.; Lee, H.; Park, C. B., Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization. Adv. Funct. Mater. 2010, 20 (13), 2132-2139.
41. Thakur, V. K.; Vennerberg, D.; Madbouly, S. A.; Kessler, M. R., Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv. 2014, 4 (13), 6677-6684.
42. Armistead, C. G.; Tyler, A. J.; Hambleton, F. H.; Mitchell, S. A.; Hockey, J. A., Surface hydroxylation of silica. J. Phys. Chem. 1969, 73 (11), 3947-3953.
43. Masteika, V.; Kowal, J.; Braithwaite, N. S. J.; Rogers, T., A Review of Hydrophilic Silicon Wafer Bonding. ECS J. Solid State Sci. Technol. 2014, 3 (4), Q42-Q54.
44. Fukuma, T.; Ueda, Y.; Yoshioka, S.; Asakawa, H., Atomic-Scale Distribution of Water Molecules at the Mica-Water Interface Visualized by Three-Dimensional Scanning Force Microscopy. Phys. Rev. Lett. 2010, 104 (1), 016101.
45. Liberelle, B.; Banquy, X.; Giasson, S., Stability of Silanols and Grafted Alkylsilane Monolayers on Plasma-Activated Mica Surfaces. Langmuir 2008, 24 (7), 3280-3288.
46. Rabung, T.; Schild, D.; Geckeis, H.; Klenze, R.; Fanghänel, T., Cm(III) Sorption onto Sapphire (α-Al2O3) Single Crystals. J. Phys. Chem. B 2004, 108 (44), 17160-17165.
47. Ranea, V. A.; Carmichael, I.; Schneider, W. F., DFT Investigation of Intermediate Steps in the Hydrolysis of α-Al2O3(0001). J. Phys. Chem. C 2009, 113 (6), 2149-2158.
48. McHale, J. M.; Navrotsky, A.; Perrotta, A. J., Effects of Increased Surface Area and Chemisorbed H2O on the Relative Stability of Nanocrystalline γ-Al2O3 and α-Al2O3. J. Phys. Chem. B 1997, 101 (4), 603-613.
49. Yu, J.; Kan, Y.; Rapp, M.; Danner, E.; Wei, W.; Das, S.; Miller, D. R.; Chen, Y.; Waite, J. H.; Israelachvili, J. N., Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc. Natl. Acad. Sci. U.S.A 2013, 110 (39), 15680-15685.
50. Park, J. P.; Choi, M.-J.; Kim, S. H.; Lee, S. H.; Lee, H., Preparation of Sticky Escherichia coli through Surface Display of an Adhesive Catecholamine Moiety. Appl. Environ. Microbiol. 2014, 80 (1), 43-53.
51. Chai, D.; Xie, Z.; Wang, Y.; Liu, L.; Yum, Y.-J., Molecular Dynamics Investigation of the Adhesion Mechanism Acting between Dopamine and the Surface of Dopamine-Processed Aramid Fibers. ACS Appl. Mater. Interfaces 2014, 6 (20), 17974-17984.
52. Li, Y.; Qin, M.; Li, Y.; Cao, Y.; Wang, W., Single Molecule Evidence for the Adaptive Binding of DOPA to Different Wet Surfaces. Langmuir 2014, 30 (15), 4358-4366.
53. Yang, H.-C.; Luo, J.; Lv, Y.; Shen, P.; Xu, Z.-K., Surface engineering of polymer membranes via mussel-inspired chemistry. J. Membr. Sci. 2015, 483 (0), 42-59.
54. Bernsmann, F.; Richert, L.; Senger, B.; Lavalle, P.; Voegel, J.-C.; Schaaf, P.; Ball, V., Use of dopamine polymerisation to produce free-standing membranes from (PLL-HA)n exponentially growing multilayer films. Soft Matter 2008, 4 (8), 1621-1624.
55. Ball, V.; Frari, D. D.; Toniazzo, V.; Ruch, D., Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. J. Colloid Interface Sci. 2012, 386 (1), 366-372.
56. Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M.-J.; Freeman, B. D.; Park, H. B., Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry. ACS Appl. Mater. Interfaces 2013, 5 (2), 233-238.
57. Liu, Z.; Li, Z.; Zhou, H.; Wei, G.; Song, Y.; Wang, L., Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid. Microsc. Res. Tech. 2005, 66 (4), 179-185.
58. Liu, Y.; Yu, B.; Hao, J.; Zhou, F., Amination of surfaces via self-assembly of dopamine. J. Colloid Interface Sci. 2011, 362 (1), 127-134.
59. Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y., Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27 (23), 14180-14187.
60. Nirasay, S.; Badia, A.; Leclair, G.; Claverie, J.; Marcotte, I., Polydopamine-Supported Lipid Bilayers. Materials 2012, 5 (12), 2621.
61. Diebold, U.; Pan, J. M.; Madey, T. E., Growth mode of ultrathin copper overlayers on (TiO2) (110). Phys. Rev. B 1993, 47 (7), 3868-3876.
62. Floro, J. A.; Hearne, S. J.; Hunter, J. A.; Kotula, P.; Chason, E.; Seel, S. C.; Thompson, C. V., The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J. Appl. Phys. 2001, 89 (9), 4886-4897.
63. Eaglesham, D. J.; Cerullo, M., Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 1990, 64 (16), 1943-1946.
64. Sheng, W.; Li, B.; Wang, X.; Dai, B.; Yu, B.; Jia, X.; Zhou, F., Brushing up from "anywhere" under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chem. Sci. 2015, 6 (3), 2068-2073.
65. Yang, W. J.; Cai, T.; Neoh, K.-G.; Kang, E.-T.; Dickinson, G. H.; Teo, S. L.-M.; Rittschof, D., Biomimetic Anchors for Antifouling and Antibacterial Polymer Brushes on Stainless Steel. Langmuir 2011, 27 (11), 7065-7076.
66. Xuan, Y.; Jiang, G.; Li, Y.; Wang, J.; Geng, H., Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite. Colloids Surf., A 2013, 422 (0), 50-60.
67. Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J. J. d. A.; Toniazzo, V.; Ruch, D., Dopamine−Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution. Langmuir 2011, 27 (6), 2819-2825.
68. Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry 2010, 1 (9), 1430-1433.
69. McDonald, J. C.; Whitesides, G. M., Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35 (7), 491-499.
70. Zhang, Q.; Xu, J.-J.; Liu, Y.; Chen, H.-Y., In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 2008, 8 (2), 352-357.
71. Khomutov, G. B.; Gubin, S. P., Interfacial synthesis of noble metal nanoparticles. Mater. Sci. Eng. C 2002, 22 (2), 141-146.
72. Sudrik, S. G.; Chaki, N. K.; Chavan, V. B.; Chavan, S. P.; Chavan, S. P.; Sonawane, H. R.; Vijayamohanan, K., Silver Nanocluster Redox-Couple-Promoted Nonclassical Electron Transfer: An Efficient Electrochemical Wolff Rearrangement of α-Diazoketones. Chem. Eur. J. 2006, 12 (3), 859-864.
73. Abou El-Nour, K. M. M.; Eftaiha, A. a.; Al-Warthan, A.; Ammar, R. A. A., Synthesis and applications of silver nanoparticles. Arabian J. Chem. 2010, 3 (3), 135-140.
74. Yeo, S.; Lee, H.; Jeong, S., Preparation of nanocomposite fibers for permanent antibacterial effect. Journal of Materials Science 2003, 38 (10), 2143-2147.
75. Li, Y.; Schluesener, H.; Xu, S., Gold nanoparticle-based biosensors. Gold Bull. 2010, 43 (1), 29-41.
76. Gupta, R. K.; Kusuma, D. Y.; Lee, P. S.; Srinivasan, M. P., Covalent Assembly of Gold Nanoparticles for Nonvolatile Memory Applications. ACS Appl. Mater. Interfaces 2011, 3 (12), 4619-4625.
77. Duncan, B.; Kim, C.; Rotello, V. M., Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Controlled Release 2010, 148 (1), 122-127.
78. Thompson, D. T., Using gold nanoparticles for catalysis. Nano Today 2007, 2 (4), 40-43.
79. Deng, Z.; Chen, M.; Wu, L., Novel Method to Fabricate SiO2/Ag Composite Spheres and Their Catalytic, Surface-Enhanced Raman Scattering Properties. J. Phys. Chem. C 2007, 111 (31), 11692-11698.
80. Manno, D.; Filippo, E.; Di Giulio, M.; Serra, A., Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J. Non-Cryst. Solids 2008, 354 (52–54), 5515-5520.
81. Guo, J.-Z.; Cui, H.; Zhou, W.; Wang, W., Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J. Photochem. Photobiol. A 2008, 193 (2–3), 89-96.
82. Giesfeldt, K. S.; Connatser, R. M.; De Jesús, M. A.; Dutta, P.; Sepaniak, M. J., Gold-polymer nanocomposites: studies of their optical properties and their potential as SERS substrates. J. Raman Spectrosc. 2005, 36 (12), 1134-1142.
83. Cai, X.; Wang, Y.; Wang, X.; Ji, J.; Hong, J.; Pan, F.; Chen, J.; Xue, M., Fabrication of Ultrafine Soft-Matter Arrays by Selective Contact Thermochemical Reaction. Sci. Rep. 2013, 3.
84. Hsieh, S.; Cheng, Y.-A.; Hsieh, C.-W.; Liu, Y., Plasma induced patterning of polydimethylsiloxane surfaces. Mater. Sci. Eng. B 2009, 156 (1–3), 18-23.
85. Jain, P. K.; El-Sayed, M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Lett. 2008, 8 (12), 4347-4352.
86. Zhang, W.; Yang, F. K.; Han, Y.; Gaikwad, R.; Leonenko, Z.; Zhao, B., Surface and Tribological Behaviors of the Bioinspired Polydopamine Thin Films under Dry and Wet Conditions. Biomacromolecules 2013, 14 (2), 394-405.
87. Swartzentruber, B. S.; Mo, Y. W.; Kariotis, R.; Lagally, M. G.; Webb, M. B., Direct determination of step and kink energies on vicinal Si(001). Phys. Rev. Lett. 1990, 65 (15), 1913-1916.
88. Huang, K.-W.; Hsieh, C.-W.; Kan, H.-C.; Hsieh, M.-L.; Hsieh, S.; Chau, L.-K.; Cheng, T.-E.; Lin, W.-T., Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as a linker for nanoparticle-based plasmon resonance sensors. Sensor Actuat B-Chem. 2012, 163 (1), 207-215.
89. Ye, Q.; Zhou, F.; Liu, W., Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40 (7), 4244-4258.
90. Armani, D.; Liu, C.; Aluru, N. In Re-configurable fluid circuits by PDMS elastomer micromachining, Micro Electro Mechanical Systems, 1999. MEMS '99. 12th IEEE International Conference on, 17-21 Jan. 1999;pp 222-227.
91. Dyke, J. C.; Knight, K. J.; Zhou, H.; Chiu, C.-K.; Ko, C.-C.; You, W., An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications. J. Mater. Chem. 2012, 22 (43), 22888-22898.
92. Huang, H.; Zhang, Y.; Yuan, C.; Gu, G.; Ye, S., Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film. J.Nano Mat. 2014, 2014, 4.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.111.125
論文開放下載的時間是 校外不公開

Your IP address is 3.145.111.125
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code