Responsive image
博碩士論文 etd-0621116-130726 詳細資訊
Title page for etd-0621116-130726
論文名稱
Title
雙芴環聚芳香醚應用於深藍光高分子電激發光二極體之研究
The study of poly(arylene ether)s containing 9.9'-spirobifluorene and applications in deep blue polymer light-emitting diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-11
繳交日期
Date of Submission
2016-07-21
關鍵字
Keywords
色穩定度、深藍光高分子、PFO-DMP、紅位移
Deep blue polymer light-emitting diodes, Color stability, PFO-DMP, Red shift
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
中文摘要
溶液製程的有機高分子電激發光元件 (Polymer light-emitting diodes;PLED) 具有發展潛力,其優點為:低成本、高對比度、大面積製程、自發光特性……等。文獻指出紅光與綠光材料在現今效率、色純度與壽命都高於藍光,白光通常由三原色紅、藍與綠光或互補色混光而成 (例:水藍+紅色,深藍+橘色),因此藍光材料扮演重要的角色。
常見的藍光材料為Polyfluorene (PF)的衍生物poly[9,9-dioctylfluorenyl-2,7- diyl)-co-(4,4'-N-4-s-butylphenyl))diphenylamine)] (PFO-DMP),其特性為其具高發光效率、熱穩定性高與合成容易,但是PF衍生物的缺點為製作成元件時,易隨增加電壓而產生紅位移現象,並造成效率大幅下降,本論文針對此現象進行改良,研究的架構如下:
1. 將PFO–DMP製作成藍光標準元件。
2. 引用本實驗室所合成出來的spirobifluorene衍生物SFPY50-S取代PFO–DMP,應用於深藍光電激發光元件中,改善PFO–DMP的缺點。
首先研究市售藍光材料PFO–DMP與本實驗室自行合成的深藍光高分子材料SFPY50-S之材料特性,包含了吸收光譜、發光光譜、熱裂解溫度(Td)等材料量測,後將其作成元件結構為ITO/PEDOT:PSS/發光層(EML)/LiF/Ca/Al。將此藍光PFO–DMP元件製作成基本元件,再以深藍光SFPY50-S材料取代發光層PFO–DMP,將元件優化後製作成深藍光CIE(0.16 , 0.17)且色穩定度高的高分子電激發光元件(PLED)。


關鍵字:深藍光高分子、PFO-DMP、紅位移、色穩定度
Abstract
Abstract
Solution-process polymer light-emitting diodes (PLEDs) exhibiting low-cost, high-contrast, large area process, self-properties and so on, therefore, Solution-process PLEDs occupy an important position. Literature indicates that red and green light which its efficiency, color purity and life time was higher than Blue light in today. White light usually consist of three primary colors, red, blue and green light or complementary light mix together (ex: water blue + red, blue + orange), Blue light materials play an important role.
Common Blu-ray materials Polyfluorene (PF) derivatives of poly[9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-N-4-s-butylphenyl)) diphenylamine)] (PFO-DMP), whose characteristics are its high efficiency, high thermal stability and composition easy, but its disadvantages are PF derivatives for the production of components red shift with increased voltage and resulting efficiency dropped, so this thesis for improvement of this disadvantage, our research framework is as follows :
1. Use PFO – DMP as Blue Ray standard components.
2. Use our laboratory synthesis of spirobifluorene derivatives SFPY50-S replace PFO – DMP and then make Blue Ray standard components.
First research two polymer blue light materials one is commercially PFO-DMP and another is our laboratory's deep blue light SFPY50-S, including absorption and luminescence spectra, thermal decomposition temperature (Td), after that our component structure as the ITO/PEDOT:PSS/Emitting layer (EML)/LiF/Ca/Al. Use PFO – DMP as blue light elemental components, after replaced blue light emitting layer PFO – DMP by SFPY50-S, we will optimized into CIE blue light (0.16, 0.17) and high color stability of deep blue polymer light-emitting diodes (PLED).

Keyword-Deep blue polymer light-emitting diodes, PFO-DMP, Red shift, Color stability
目次 Table of Contents
論文審定書 ............................................................................................................................... i
致謝 ........................................................................................................................................... ii
中文摘要 .................................................................................................................................iii
Abstract .................................................................................................................................... iv
目錄 .......................................................................................................................................... vi
第一章 序論 ............................................................................................................................ 1
1-1 有機電激發光元件Organic Light Emitted Diode(OLED)簡介與原理 ..................... 1
1-2 Polymer Light Emitted Diode(PLED)簡介 ..................................................................... 3
1-3 有機電激發光元件特性與發光原理 ............................................................................. 9
1-3-1 單層元件 .............................................................................................................. 10
1-3-2 多層元件 .............................................................................................................. 11
1-3-3 內、外部量子效率 ............................................................................................. 12
1-3-4 基本光學特性 ..................................................................................................... 13
1-3-5 CIE 座標 ............................................................................................................... 14
第二章 實驗原理 .................................................................................................................. 16
2-1 有機電激發光元件之發光原理 ................................................................................... 16
2-1-1 有機及無機電激發光機制概略比較 ................................................................ 16
2-1-2 有機電激發光元件發光機制............................................................................. 19
2-2 有機電激發光元件掺雜技術 ....................................................................................... 21
2-3 有機電激發光元件能量轉移機制 ............................................................................... 23
2-3-1 Förster 能量轉移 .................................................................................................. 23
2-3-2 Dexter 能量轉移 .................................................................................................. 23
2-4 聚芴(Polyfluorene)為主的高分子 ................................................................................ 24
2-4-1 芴與聚芴高分子 ................................................................................................. 24
2-4-2 聚芴高分子的酮缺陷(Defect) ........................................................................... 25
2-5 研究動機 ......................................................................................................................... 27
第三章 實驗器材與實驗流程 ............................................................................................. 29
3-1 實驗材料 .......................................................................................................................... 29
3-2 實驗設計 .......................................................................................................................... 31
3-3 實驗器材 .......................................................................................................................... 33
3-3-1 製程儀器介紹 ..................................................................................................... 33
3-3-2 量測儀器介紹 ..................................................................................................... 37
3-4 實驗步驟 ......................................................................................................................... 46
3-4-1 高分子電激發光元件製作流程 ........................................................................ 46
4-1 材料熱性質分析 ............................................................................................................ 51
4-1-1 熱重分析儀(Thermogravimetric analyzer, TGA)............................................. 51
4-2 高分子材料光電特性分析............................................................................................ 52
4-2-1 高分子材料光學特性量測................................................................................. 52
4-2-2 量子產率 .............................................................................................................. 55
4-3 基礎高分子電激發光元件製作 ................................................................................... 57
4-3-1 基礎藍光高分子PFO–DMP 電激發光元件製作 ........................................... 57
4-3-2 深藍光SFPY50-S 高分子電激發光元件製作 ................................................ 64
第五章 總結與未來工作 ..................................................................................................... 73
5-1 總結 ................................................................................................................................. 73
5-2 未來工作 ......................................................................................................................... 73
參考文獻 ................................................................................................................................ 75
參考文獻 References
1. M. Pope, P. Magnante and H. P. Kallmann, J. Chem. Phys. 38, 2042 (1963).
2. C. W. Tang, S. A. Vanslyke and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature 347, 539 (1990).
4. Y. Yang, E. Westerweele, C. Zhang, P. Smith and A. J. Heeger, J. Appl. Phys. 77, 694 (1995).
5. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holmes, Nature 365, 628 (1993).
6. A. Kraft, A. C. Grimsdale and A. B. Holmes, Angew. Chem.-Int. Edit. 37, 402 (1998).
7. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature 357, 477 (1992).
8. S. Miyata, H. S. Nalwa, “Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers”, Chap 8 (1997).
9. 鄭嘉隆,(新電子科技雜誌),167,203,(2000)
10. X. D. Sun, K. A. Wang, Y. Yoo, W. G. WallaceFreedman, C. Gao, X. D. Xiang and P. G. Schultz, Adv. Mater. 9, 1046 (1997).
1. S. C. Chang, J. Bharathan, Y. Yang, R. Helgeson, F. Wudl, M. B. Ramey and J. R. Reynolds, Appl. Phys. Lett. 73, 2561 (1998).
2. Y. Yang, S. C. Chang, J. Bharathan and J. Liu, J. Mater. Sci.-Mater. Electron. 11, 89 (2000).
3. B. J. de Gans, P. C. Duineveld and U. S. Schubert, Adv. Mater. 16, 203 (2004).
4. Y. Yang, S. C. Chang, J. Bharathan and J. Liu, J. Mater. Sci.-Mater. Electron. 11, 89 (2000).
5. 楊素華,光訊雜誌,98,29,(2002)。
16. S. Miyata, H. S. Nalwa, “Organic Electroluminescent Materials and Devices”, Gordon and Breach Science Publishers, Chap 1 (1997).
17. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi and K. Seki, J. Appl. Phys. 83, 4928 (1998).
18. X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai and S. He, Appl. Phys. Lett. 91, 221112 (2007).
19. S. R. Forrest, D. D. C. Bradley and M. E. Thompson, Adv. Mater. 15, 1043 (2003).
20. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (1982), New York, Wiley
21. 陳志強著,“OLED有機發光二極體顯示器技術”,全華圖書股份有限公司(2014)
22. X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai and S. He, Appl. Phys. Lett. 91 (2007).
23. S. M. Sze,“Semiconductor Sevices-Physics and Technology 2nd Edition”, (2002)
24. Z. H. Kafafi,“Organic Electroluminescence”, CRC Press Taylor &
Francis Group, 39(2005).
25. S. M. Sze,“Semiconductor Sevices-Physics and Technology 2nd
Edition ”, John Wiley & Sons (2002).
26. M. Era, C. Adachi, T. Tsutsui and S. Saito, Chemical Physics Letters 178, 488 (1991).
27. D. A. Skoog, F. J. Holler, T. A. Nieman,“Principios De Análisis Instrumental”(2003).
28. J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995).
29. M. Klessinger, J. Michl,“Excited States and Photochemistry of Organic Molecules”, VCH Publishers, New York (1995).
30. 陳金鑫與黃孝文,“OLED有機電激發光材料與元件”,五南出版社 (2005).
31. M. Klessinger, J. Michl, “Excited states and photochemistry of organic molecules”, VCH Publishers, New York (1995).
32. T. Virgili, D. G. Lidzey and D. D. C. Bradley, Adv. Mater. 12, 58 (2000).
33. U. Scherf and E. J. W. List, Adv. Mater. 14, 477 (2002).
34. A. P. Kulkarni, Y. Zhu and S. A. Jenekhe, Macromolecules 38, 1553 (2005).
35. M. Gross, D. C. Muller, H. G. Nothofer, U. Scherf, D. Neher, C. Brauchle and K. Meerholz, Nature 405, 661 (2000).
36. A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu and E. P. Woo, Appl. Phys. Lett. 73, 629 (1998).
37. T. Virgili, D. G. Lidzey and D. D. C. Bradley, Adv. Mater. 12, 58 (2000).
38. M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf and A. Yasuda, Adv. Mater. 11, 671 (1999).
39. U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Mullen and H. Bassler, Chemical Physics Letters 240, 373 (1995).
40. V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller and D. C. Miller, Macromolecules 32, 361 (1999).
41. G. Zeng, W. L. Yu, S. J. Chua and W. Huang, Macromolecules 35, 6907 (2002).
42. M. Kuik, G.-J. A. H. Wetzelaer, J. G. Ladde, H. T. Nicolai, J. Wildeman, J. Sweelssen and P. W. M. Blom, Advanced Functional Materials 21, 4502 (2011).
43. Y. F. Chen, Post-annealing effects of indium tin oxide films on glass deposited by rf sputtering (2006).
44. Y. J. Tsai, The study of material properties of the novel red dopant in OLED (2006).
45. 謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用 (2005)
46. M. Klessinger, Angewandte Chemie-International Edition in English 34, 549 (1995).
47. S. A. Choulis, V. E. Choong, A. Patwardhan, M. K. Mathai and F. So, Advanced Functional Materials 16, 1075 (2006).
48. L. Duan, B. D. Chin, N. C. Yang, M. H. Kim, H. D. Kim, S. T. Lee and H. K. Chung, Synth. Met. 157, 343 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.59.187
論文開放下載的時間是 校外不公開

Your IP address is 3.145.59.187
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code