Responsive image
博碩士論文 etd-0621116-154130 詳細資訊
Title page for etd-0621116-154130
論文名稱
Title
二維與三維拓撲材料其物性暨應用之理論研究
Theoretical study of the physical properties and applications in 2D and 3D topological materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
184
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-30
繳交日期
Date of Submission
2016-07-22
關鍵字
Keywords
重整化群、拓撲晶態絕緣體、自旋電子學、量子自旋霍爾效應、拓撲相變、凡霍夫奇點
spintronics, topological crystalline insulators, topological phase transition, quantum spin Hall effect, van Hove singularity, renormalization group
統計
Statistics
本論文已被瀏覽 5715 次,被下載 248
The thesis/dissertation has been browsed 5715 times, has been downloaded 248 times.
中文摘要
本論文提出一系列的研究針對二維拓撲絕緣體與三維拓撲晶態絕緣體之物理性質與潛在的應用。具備時間返演不變性的二維拓撲絕緣體,為已知的量子自旋霍爾絕緣體,潛藏著拓撲保護的螺旋邊緣態,帶有不可消滅且(幾乎)量化的自旋霍爾響應。尤其是被預測為二維拓撲絕緣體的四族元素化合物,我們研究其對應的電子性質並發現數個顯卓的特徵,如塊材能譜中出現場致自旋極化的非簡併狄拉克錐。基於此族材料的等效最緊束縛模型,透過數值計算的發現,提出兩個可行的自旋電子學元件:高效能的自旋篩選器和由不均勻電場產生自旋電流的三進位制邏輯元件。另外,對於鏡像對稱保護的拓撲晶態絕緣體,如我們所關注的材料—碲(硒)化鉛錫,經第一原理計算,在(001)表面上拓撲保護的表面態,已經預測了一些值得注意的特性。為了證實並彰顯這些特徵,我們首先理論上計算表面態間受雜質散射造成的準粒子干涉圖。我們的結果顯示似狄拉克錐的能譜和不尋常的軌道結構,並且都符合掃描穿隧能譜實驗的觀測結果。其次,我們運用區塊重整化群的分析,並預估當逼近表面能譜中的凡霍夫奇點附近時,受電子-電子交互作用驅使的P 波超導序會脫穎而出。最後,我們探討了表面態上破壞鏡像對稱的應力所產生的效應。如下的發現拓展了拓撲晶態絕緣體在未來電子工程與自旋電子學之應用的可能性: 1)不需破壞時間返演對稱性而出現如刺蝟狀的自旋結構,2)季曼場下可經應力調變的陳數,與3)受應力與電子關聯性的相互影響而產生的競爭序。
Abstract
This dissertation brings together a series of studies on physical properties and potential applications in both two-dimensional (2D) topological insulators (TIs) and three-dimensional (3D) topological crystalline insulators (TCIs). Time-reversal invariant 2D TIs, also known as quantum spin Hall (QSH) insulators, can harbor topology-protected helical edge states with nonvanishing (almost) quantized spin Hall response. Particularly in a predicted family of 2D TIs synthesized by group IVA elements, we study its corresponding electronic properties and find a number of salient features such as the presence of field-induced spin-polarized, non-degenerate Dirac cones in the bulk spectrum. Based on our findings, we propose two possible spintronic applications: A high-efficiency spin filter and a ternary logic device via an inhomogeneous electric field generated spin current, which are both demonstrated by our numerical calculations in an effective tight-binding model appropriate for such family of materials. In addition, the mirror-symmetry protected TCIs, such as our focused materials, Pb_(1-x)Sn_x(Te,Se), have been predicted to have several remarkable features for the topology-protected surface states on (001) surface via first-principles calculations. To verify and sharpen these features, we first theoretically compute the quasiparticle interference patterns due to impurity scattering among the surface states. Our results reveal their Dirac-like spectra and nontrivial orbital texture, which are consistent with scanning tunneling spectroscopy seen in the experiment. Second, we perform patch renormalization group analysis and predict the emergence of electron-electron interaction-driven p-wave superconducting order around van Hove singularities appearing in the surface spectrum. Finally, we consider the effects of broken-mirror-symmetry strains on the surface states. The discoveries of hedgehog-like spin texture without breaking time-reversal symmetry, a strain-tunable Chern number with a given Zeeman field, and resultant competing orders due to the interplay between strain and electron correlations extend the possibilities of future electronic and spintronic applications based on TCIs.
目次 Table of Contents
Acknowledgments ii
摘要 iii
Abstract iv
LIST OF FIGURES viii
LIST OF TABLES xi
1 Introduction to topological materials 1
2 Basic electronic properties of 2D topological insulators via IVA group elements 6
3 Potential applications: Silicene as an example 20
3.1 High efficiency spin filter 21
3.1.1 Geometry of device 21
3.1.2 Numerical results of spin-polarized of transport 21
3.1.3 Transport properties 24
3.1.4 Discussion and future perspectives 25
3.2 Field-tunable local transport channels 28
3.2.1 Generation of spin currents via domain wall states 28
3.2.2 Discussion on ternary logic device 30
4 Basic electronic properties of 3D topological crystalline insulators 33
4.1 Quasi-particle interference patterns 39
4.2 Interaction-driven p-wave superconductivity 45
4.2.1 Low-energy effective model at saddle points 46
4.2.2 Patch renormalization group analysis 47
4.2.3 RG equations 49
4.2.4 Competing orders and phase diagram 52
4.2.5 Discussion 56
4.3 Strain effects: Gap opening and hedgehog spin textures 59
5 Potential applications of TCIs: Pb_(1-x)Sn_x(Te,Se) as an example 64
5.1 Tuning Chern number via the interplay between strain and a Zeeman field 64
5.2 Strain-tunable broken-symmetry orders via electron correlations 67
5.2.1 System without strain 70
5.2.2 System under moderate strain 72
5.2.3 System with large strain 73
5.3 Discussion 74
6 Conclusion 75
References 77
APPENDICES 95
A Spin Chern number in silicene 95
B Derivation of energy dispersion of domain wall states 97
C Iterative Green’s function method for electric transportation 103
D Investigation of the efficiency of spin filter in various phases 107
D.1 Case 1: λ_v = 0.7t, h = 0.1t 107
D.2 Case 2: λ_v = 0, h = 0.52t 108
D.3 Case 3: λ_v = 0.6t, h = 0.1t 108
E Investigation of effects of defects in spin filter 110
F Simulation of QPI patterns using the T-matrix approach 114
F.1 T-matrix formulation 116
F.2 Simulation results 117
G Derivation of RG flow equations 122
G.1 Brief introduction of Shankar’s RG process 122
G.2 The explicit derivations for RG flow equations 126
G.2.1 RG flow equations from 1/8 ∫〈g^2_1〉 127
G.2.2 RG flow equations from 1/2 ∫〈g^2_3〉 131
G.2.3 RG flow equations from 1/2 ∫〈g^2_5〉 134
G.2.4 RG flow equations from 1/2 ∫〈g_1g_3〉 140
G.2.5 RG flow equations from 1/2 ∫〈g_1g_5〉 143
G.2.6 RG flow equations from ∫〈g_3g_5〉 146
G.2.7 Summary of RG flow equations 150
H Derivation of susceptibilities in particle-particle and particle-hole channels 151
H.1 Particle-hole susceptibility χ^(ph)_0 with transfer momentum q = 0 152
H.2 Particle-hole susceptibility χ^(ph)_(Q͂_1) with transfer momentum Q͂_1 153
H.3 Particle-hole susceptibility χ^(ph)_(Q͂_2) with transfer momentum Q͂_2 153
H.4 Particle-particle susceptibility χ^(pp)_0 with total momentum q = 0 156
H.5 Particle-particle susceptibility χ^(pp)_(Q͂_1) with total momentum Q͂_1 157
H.6 Particle-particle susceptibility χ^(pp)_(Q͂_(13)) with total momentum Q͂_(13) 157
I Derivation of out-of-plane spin component with xz-mirror symmetry breaking 160
J Derivation of mean-field theory 164
Autobiography 170
參考文獻 References
[1] L. Fu and C. L. Kane. Time reversal polarization and a Z_2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).
[2] L. Fu, C. Kane and E. Mele. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
[3] L. Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
[4] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band structures. Phys Rev B 75, 121306 (2007).
[5] Wei Zhang, Rui Yu, Hai-Jun Zhang, Xi Dai and Zhong Fang. First-principles studies of the three-dimensional strong topological insulators Bi_2Te_3, Bi_2Se_3 and Sb_2Te_3. New J. Phys. 12, 065013 (2010).
[6] Chao-Xing Liu, Xiao-Liang Qi, Hai Jun Zhang, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Model Hamiltonian for topological insulators. Phys. Rev. B 82,045122 (2010).
[7] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
[8] X.-L. Qi and S-C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
[9] J. E. Moore. The birth of topological insulators. Nature 464, 194 (2010).
[10] Y. Ando. Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013).
[11] M. Nakahara. Geometry, Topology and Physics (Hilger, Bristol, 1990).
[12] D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405 (1982).
[13] A. P. Schnyder, S. Ryu, A. Furusaki and A. W. W. Ludwig. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).
[14] A. Kitaev. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009).
[15] Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki and Andreas W. W. Ludwig. Classification of Topological Insulators and Superconductors. AIP Conf. Proc. 1134, 10 (2009).
[16] Shinsei Ryu and Tadashi Takayanagi. Topological insulators and superconductors from D-brane. Phys. Lett. B 693, 175 (2010).
[17] T. L. Hughes, E. Prodan and B. A. Bernevig. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2010).
[18] A. M. Turner, Y. Zhang, R. S. K. Mong and A. Vishwanath. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).
[19] C. Fang, M. J. Gilbert and B. A. Bernevig. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).
[20] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen. The space group classification of topological band-insulators. Nat. Phys. 9, 98 (2012).
[21] K. Shiozaki and M. Sato. Topology of crystalline insulators and superconductors. Phys. Rev. B 90, 165114 (2014).
[22] C. L. Kane and E. J. Mele. Z_2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005).
[23] C. L. Kane and E. J. Mele. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).
[24] F. D. M. Haldane. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988).
[25] B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang. Quantum Spin Hall Effect and Topological Phase Transition in HgTe QuantumWells. Science 314, 1757 (2006).
[26] Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W. Molenkamp, Xiao-Liang Qi and Shou-Cheng Zhang. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 318, 766 (2007).
[27] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z.-X. Shen. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178 (2009).
[28] Jeffrey C. Y. Teo, Liang Fu and C. L. Kane. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi_(1-x)Sb_x. Phys. Rev. B 78, 045426 (2008).
[29] L. Fu. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).
[30] J. Liu, W. Duan and L. Fu. Two types of surface states in topological crystalline insulators. Phys. Rev. B 88, 241303 (2013).
[31] Ching-Kai Chiu, Hong Yao, and Shinsei Ryu. Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142 (2013)
[32] H. Hertz. On the influence of ultraviolet light on the electric discharge. Ann. Phys. (Berlin) 267, 983 (1887).
[33] A. Einstein. ´’Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. (Berlin) 322, 132 (1905).
[34] A. Damascelli, Z. Hussain, Z.-X. Shen. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003).
[35] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava and M. Z. Hasan. Observation of Unconventional Quantum Spin Textures in Topological Insulators. Science 323, 919 (2009).
[36] Y. Cao, J. A. Waugh, X.-W. Zhang, J.-W. Luo, Q. Wang, T. J. Reber, S. K. Mo, Z. Xu, A. Yang, J. Schneeloch, G. D. Gu, M. Brahlek, N. Bansal, S. Oh, A. Zunger and D. S. Dessau. Mapping the orbital wavefunction of the surface states in three dimensional topological insulators. Nat. Phys. 9, 499 (2013).
[37] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil ans L. Fu. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).
[38] Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan and A. Bansil. Nontrivial spin texture of the coaxial Dirac cones on the surface of topological crystalline insulator SnTe. Phys. Rev. B 87, 235317 (2013).
[39] T. O.Wehling, E. Şaşıoğlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel. Strength of Effective Coulomb Interactions in Graphene and Graphite. Phys. Rev. Lett. 106, 236805 (2011).
[40] Importance of the Coulomb interaction for relativistic quasiparticles may be assessed approximately by the dimensionless interaction strength, α= e^2/(εν_Fħ), where ε denotes the dielectric constant, and v_F is the Fermi velocity. For graphene, εα≈2.2, while for SnTe εα is even higher due to a smaller value of v_F.
[41] C.-X. Liu, X.-L. Qi and S.-C. Zhang. Half quantum spin Hall effect on the surface of weak topological insulators. Physica E 44, 906 (2012).
[42] G. S. Bushmarina, I. A. Drabkin, V. V. Kompaniets, R. V. Parfen’ev, D. V. Shamshur and M. A. Shakhov. Superconducting transition in SnTe doped with In. Fizika Tverdogo Tela 28(4), 1094 (1986).
[43] A. S. Erickson, J.-H. Chu, M. F. Toney, T. H. Geballe, and I. R. Fisher. Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys. Rev. B 79, 024520 (2009).
[44] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong and R. J. Cava. Superconductivity in Cu_xBi_2Se_3 and its Implications for Pairing in the Undoped Topological Insulator. Phys. Rev. Lett. 104, 057001 (2010).
[45] M. Kriener, K. Segawa, Z. Ren, S. Sasaki and Y. Ando. Bulk Superconducting Phase with a Full Energy Gap in the Doped Topological Insulator CuxBi2Se3. Phys. Rev. Lett. 106, 127004 (2011).
[46] S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato and Y. Ando. Topological Superconductivity in Cu_xBi_2Se_3. Phys. Rev. Lett. 107, 217001 (2011).
[47] S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, L. Fu and Y. Ando. Odd-Parity Pairing and Topological Superconductivity in a Strongly Spin-Orbit Coupled Semiconductor. Phys. Rev. Lett. 109, 217004 (2012).
[48] L. Zhao, H. Deng, I. Korzhovska, J. Secor, M. Begliarbekov, Z. Chen, E. Andrade, E. Rosenthal, A. Pasupathy, V. Oganesyan and L. Krusin-Elbaum. Emergent surface superconductivity of nanosized Dirac puddles in a topological insulator. arXiv: 1408.1046v1 [cond-mat.supr-con] (2014).
[49] Q. L. He, H. C. Liu, M. Q. He, Y. H. Lai, H. T. He, G. Wang, K. T. Law, R. Lortz, J. N. Wang and I. K. Sou. Two-dimensional superconductivity at the interface of a Bi_2Te_3/FeTe heterostructure. Nat. Commun. 5, 4247 (2014).
[50] S. Datta and B. Das. Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665 (1990).
[51] E. I. Rashba. Cyclotron and combined resonances in a perpendicular field. Sov. Phys. Solid State 2, 1109 (1960).
[52] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno and K. Ohtani. Electric-field control of ferromagnetism. Nature 408, 944 (2000).
[53] K. Sato and H. Katayama-Yoshida, First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002).
[54] S.W. Yoon, S.-B. Cho, S. C.We, S. Yoon, B. J. Suh, H. K. Song, Y. J. Shin. Magnetic properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 93, 7879 (2003).
[55] P. Sati, C. Deparis, C. Morhain, S. Schäfer, A. Stepanov, Antiferromagnetic Interactions in Single Crystalline Zn_(1-x)Co_xO Thin Films. Phys. Rev. Lett. 98, 137204 (2007).
[56] T. Shi, S. Zhu, Z. Sun, S. Wei and W. Liu, Structures and magnetic properties of wurtzite Zn_(1-x)Co_xO dilute magnetic semiconductor nanocomposites. Appl. Phys. Lett. 90, 102108 (2007).
[57] S. Yin, M. X. Xu, L. Yang, J. F. Liu, H. Rösner, H. Hahn, H. Gleiter, D. Schild, S. Doyle, T. Liu, T. D. Hu, E. Takayama-Muromachi and J. Z. Jiang. Absence of ferromagnetism in bulk polycrystalline Zn_0.9Co_0.1O. Phys. Rev. B 73, 224408 (2006).
[58] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby and S. I. Shah. Effect of reducing atmosphere on the magnetism of Zn_(1-x)Co_xO (0 ≤x ≤0.10) nanoparticles. Nanotechnology 17, 2675 (2006).
[59] M.-H. Tsai, T.-Y. Jiang, and C.-Y. Huang. Competition between ferromagnetic and anti-ferromagnetic couplings in Co-doped ZnO with vacancies and Ga co-dopants. J. Magn. Magn. Mater. 324, 1733 (2012).
[60] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth and A. H. MacDonald. Universal Intrinsic Spin Hall Effect. Phys. Rev. Lett. 92,126603 (2004).
[61] M. I. D’yakonov and V. I. Perel. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459 (1971).
[62] J. E. Hirsch. Spin Hall Effect. Phys. Rev. Lett. 83, 1834 (1999).
[63] E. M. Hankiewicz, L. W. Molenkamp, T. Jungwirth and J. Sinova. Manifestation of the spin Hall effect through charge-transport in the mesoscopic regime. Phys. Rev. B 70, 241301(R) (2004).
[64] V. Sih and D. D. Awschalom. Electrical manipulation of spin-orbit coupling in semiconductor heterostructures. J. Appl. Phys. 101, 081710 (2007).
[65] A. W. Cummings, R. Akis, D. K. Ferry, J. Jacob, T. Matsuyama, U. Merkt and G. Meier. Cascade of Y-shaped spin filters in InGaAs/InAs/InGaAs quantum wells. J. Appl. Phys. 104, 066106 (2008).
[66] J. Nitta, T. Bergsten, Y. Kunihashi and M. Kohda. Electrical manipulation of spins in the Rashba two dimensional electron gas systems. J. Appl. Phys. 105, 122402 (2009).
[67] J. Jacob, G. Meier, S. Peters, T. Matsuyama, U. Merkt, A. W. Cummings, R. Akis and D. K. Ferry. Generation of highly spin-polarized currents in cascaded InAs spin filters. J. Appl. Phys. 105, 093714 (2009).
[68] L. G. Wang, K. Chang and K. S. Chan. Charge and spin currents in a three-terminal mesoscopic ring. J. Appl. Phys. 105, 013710 (2009).
[69] C.-L. Chen, S.-H. Chen, M.-H. Liu and C.-R. Chang. Spin transport in a tubular two-dimensional electron gas with Rashba spin-orbit coupling. J. Appl. Phys. 108, 033715 (2010).
[70] J. Jacob, H. Lehmann, U. Merkt, S. Mehl and E. M. Hankiewicz. Direct current biased InAs spin-filter cascades. J. Appl. Phys. 112, 013706 (2012).
[71] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph and R. A. Buhrman. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555 (2012).
[72] O. V. Yazyev, J. E. Moore and S. G. Louie. Spin Polarization and Transport of Surface States in the Topological Insulators Bi_2Se_3, and Bi_2Te_3 from First Principles. Phys. Rev. Lett. 105, 266806 (2010).
[73] D. D. Awschalom and M. E. Flatt. Challenges for semiconductor spintronics. Nat. Phys. 3, 153 (2007).
[74] D. D. Awschalom and N. Samarth. Spintronics without magnetism. Physics 2, 50 (2009).
[75] I. Žutić, J. Fabian and S. Das Sarma. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).
[76] Hongki Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, Leonard Kleinman and A. H. MacDonald. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).
[77] Sergej Konschuh, Martin Gmitra and Jaroslav Fabian. Tight-binding theory of the spin-orbit coupling in graphene. Phys. Rev. B 82, 245412 (2010).
[78] C.-C. Liu, W. Feng and Y. Yao. Quantum spin Hall effect in silicene and two dimensional Germanium. Phys. Rev. Lett. 107, 076802 (2011).
[79] C.-C. Liu, H. Jiang and Y. Yao. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011).
[80] Timo Saari, Cheng-Yi Huang, Jouko Nieminen, Wei-Feng Tsai, Hsin Lin and Arun Bansil. Electrically tunable localized tunneling channels in silicene nanoribbons. Appl. Phys. Lett. 104, 173104 (2014).
[81] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004).
[82] Daniel Huertas-Hernando, F. Guinea and Arne Brataas. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).
[83] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl and J. Fabian. Band structure topologies of graphene: Spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009).
[84] A. H. Castro Neto and F. Guinea. Impurity-Induced Spin-Orbit Coupling in Graphene. Phys. Rev. Lett. 103, 026804 (2009).
[85] Jayakumar Balakrishnan, Gavin Kok Wai Koon, Manu Jaiswal, A. H. Castro Neto and Barbaros Özyilmaz. Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9, 284 (2013).
[86] Martin Gmitra, Denis Kochan and Jaroslav Fabian. Spin-Orbit Coupling in Hydrogenated Graphene. Phys. Rev. Lett. 110, 246602 (2013).
[87] W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng and A. Bansil. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat. Commun. 4, 1500 (2013).
[88] N. D. Drummond, V. Zolyomi and V. I. Fal’ko. Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012).
[89] M. Ezawa. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012).
[90] D. N. Sheng, Z.Y.Weng, L. Sheng and F. D. M. Haldane. Quantum Spin-Hall Effect and Topologically Invariant Chern Numbers. Phys. Rev. Lett. 97, 036808 (2006).
[91] G. W. Semenoff, V. Semenoff,, and F. Zhou. Domain Walls in Gapped Graphene. Phys. Rev. Lett. 101, 087204 (2008).
[92] A. Rycerz, J. Tworzydlo and C. W. J. Beenakker. Valley filter and valley valve in graphene. Nat. Phys. 3, 172 (2007).
[93] T. Ando. Quantum point contacts in magnetic fields. Phys. Rev. B 44, 8017 (1991).
[94] M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Japan 65, 1920 (1996).
[95] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).
[96] D. Xiao, W. Yao and Q. Niu. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
[97] G. Gupta, H. Lin, A. Bansil, M. B. Abdul Jalil, C.-Y. Huang,W.-F. Tsai and G. Liang. Y-shape spin-separator for two-dimensional group-IV nanoribbons based on quantum spin hall effect. Appl. Phys. Lett. 104, 032410 (2014).
[98] J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik and M. Batzill. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326 (2010).
[99] D. Gunlycke and C. T. White. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).
[100] P. Recher and B. Trauzettel. A defect controls transport in graphene. Physics 4, 25 (2011).
[101] Jingwei Bai, Xiangfeng Duan and Yu Huang. Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask. Nano Lett. 9, 2083 (2009).
[102] Benjamin Krauss, Péter Nemes-Incze, Viera Skakalova, László P. Biro, Klaus von Klitzing and Jurgen H. Smet. Raman Scattering at Pure Graphene Zigzag Edges. Nano Lett. 10, 4544 (2010).
[103] Zhiwen Shi, Rong Yang, Lianchang Zhang, Yi Wang, Donghua Liu, Dongxia Shi, Enge Wang and Guangyu Zhang. Patterning Graphene with Zigzag Edges by Self-Aligned Anisotropic Etching. Adv. Mater. 23, 3061 (2011).
[104] Xiaoting Jia, Jessica Campos-Delgado, Mauricio Terrones, Vincent Meuniere and Mildred S. Dresselhaus. Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86 (2011).
[105] Yousuke Kobayashi, Ken-ichi Fukui, Toshiaki Enoki, Koichi Kusakabe and Yutaka Kaburagi. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).
[106] Bing Huang, Feng Liu, Jian Wu, Bing-Lin Gu and Wenhui Duan. Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Phys. Rev. B 77, 153411 (2008).
[107] L. G. Cançado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala and A. C. Ferrari. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 11, 3190 (2011).
[108] B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet and G. L. Lay. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010).
[109] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet and B. Aufray. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010).
[110] C.-L. Lin, R. Arafune1, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi and M. Kawai. Structure of Silicene Grown on Ag(111). Appl. Phys. Express 5, 045802 (2012).
[111] H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J. Y. Hoarau, B. Aufray and J. P. Bibérian. Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J. Phys. Condens. Matter 24, 172001 (2012).
[112] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y.Wang and Y. Yamada-Takamura. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012).
[113] P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet and G. L. Lay. Silicene: Compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).
[114] G. Le Lay, P. De Padova, A. Resta, T. Bruhn and P. Vogt. Epitaxial silicene: can it be strongly strained? J. Phys. D: Appl. Phys. 45, 392001 (2012).
[115] H. Enriquez, S. Vizzini, A. Kara , B. Lalmi and H. Oughaddou. Silicene structures on silver surfaces. J. Phys. Condens. Matter 24, 314211 (2012).
[116] R. Arafune, C.-L. Lin, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi and M. Kawai. Structural transition of silicene on Ag(111). Surf. Sci. 608, 297 (2013).
[117] L. Meng, Y.Wang, L. Zhang, S. Du, R.Wu, L. Li, Y. Zhang, G. Li, H. Zhou,W. A. Hofer and H.-J. Gao. Buckled Silicene Formation on Ir(111). Nano Lett. 13, 685 (2013).
[118] M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio and G. Le Lay. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).
[119] Feng-Feng Zhu, Wei-Jiong Chen, Yong Xu, Chun-Lei Gao, Dan-Dan Guan, Can-Hua Liu, Dong Qian, Shou-Cheng Zhang and Jin-Feng Jia, Epitaxial growth of twodimensional stanene. Nat. Mat. 14, 1020 (2014).
[120] P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg and T. Story. Topological crystalline insulator states in Pb_(1-x)Sn_xSe. Nat. Mater. 11, 1023 (2012).
[121] S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil and M. Z. Hasan. Observation of a topological crystalline insulator phase and topological phase transition in Pb_(1-x)Sn_xTe. Nat. Commun. 3, 1192 (2012).
[122] Y. Tanaka, Zhi Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Kouji Segawa and Yoichi Ando. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800 (2012).
[123] Y. Tanaka, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Zhi Ren, M. Novak, Kouji Segawa and Yoichi Ando. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb_(1-x)Sn_xTe. Phys. Rev. B 87, 155105 (2013).
[124] C. Fang, M. J. Gilbert, S.-Y. Xu, B. A. Bernevig, M. Z. Hasan. Surface State Quasiparticle Interference in Crystalline Topological Insulators. Phys. Rev. B 88, 125141 (2013).
[125] G. Yang, J. Liu, L. Fu, W. Duan and C. Liu. Weak topological insulators in PbTe/SnTe superlattices. Phys. Rev. B 89, 085312 (2014).
[126] B. Yan, L. Müchler and C. Felser. Prediction of Weak Topological Insulators in Layered Semiconductors. Phys. Rev. Lett. 109, 116406 (2012).
[127] J. E. Hoffman, K. McElroy, D.-H. Lee, K. M Lang, H. Eisaki, S. Uchida and J. C. Davis. Imaging quasiparticle interference in Bi_2Sr_2CaCu_2O_(8+δ). Science 297, 1148 (2002).
[128] B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer and A. Yazdani. Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 9, 474 (2013).
[129] M. P. Allan, F. Massee, D. K. Morr, J. Van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic and J. C. Davis. Imaging Cooper pairing of heavy fermions in CeCoIn_5. Nat. Phys. 9, 468 (2013).
[130] J. Seo, P. Roushan, H. Beidenkopf, Y. S. Hor, R. J. Cava and A. Yazdani. Transmission of topological surface states through surface barriers. Nature 466, 343 (2010).
[131] Y. Okada, C. Dhital, W. Zhou, E. D. Huemiller, H. Lin, S. Basak, A. Bansil, Y.-B. Huang, H. Ding, Z. Wang, S. D. Wilson and V. Madhavan. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 106, 206805 (2011).
[132] Y. Okada, W. Zhou, D. Walkup, C. Dhital, S. D. Wilson and V. Madhavan. Ripple modulated electronic structure of a 3D topological insulator. Nat. Commun. 3, 1158 (2012).
[133] Y. Tokura and N. Nagaosa. Orbital physics in transition-metal oxides. Science 288, 462 (2000).
[134] F. Krüger, S. Kumar, J. Zaanen and J. van den Brink. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).
[135] C-C. Lee,W.-G. Yin and W. Ku. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).
[136] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101 (2009).
[137] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).
[138] A. Gyenis, I. K. Drozdov, S. Nadj-Perge, O. B. Jeong, J. Seo, I. Pletikosić, T. Valla, G. D. Gu and A. Yazdani. Quasiparticle interference on the surface of the topological crystalline insulator Pb_(1-x)Sn_xSe. Phys. Rev. B 88, 125414 (2013).
[139] I. Zeljkovic, Y. Okada, C.-Y. Huang, R. Sankar, D.Walkup,W. Zhou, M. Serbyn, F. Chou,W.-F. Tsai, H. Lin, A. Bansil, L. Fu, M. Z. Hasan and V. Madhavan. Mapping the unconventional orbital texture in topological crystalline insulators. Nat. Phys. 10, 572 (2014).
[140] J. Dimmock and G. Wright. Band edge structure of PbS, PbSe, and PbTe. Phys. Rev. 135, A821 (1964).
[141] Léon Van Hove. The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal. Phys. Rev. 89, 1189 (1953).
[142] S. Raghu, S. A. Kivelson and D. J. Scalapino. Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling solution. Phys. Rev. B 81, 224505 (2010).
[143] Rahul Nandkishore, L. S. Levitov and A. V. Chubukov. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158 (2012).
[144] Hong Yao and Fan Yang. Topological Odd-Parity Superconductivity at Type-II 2D Van Hove Singularities. Phys. Rev. B 92, 035132 (2015).
[145] W. Kohn and J.M. Luttinger. New Mechanism for Superconductivity. Phys. Rev. Lett. 15, 524 (1965).
[146] R. Shankar. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)
[147] Xiao-Liang Qi, S. Raghu, Chao-Xing Liu, D. J. Scalapino and Shou-Cheng Zhang. Pairing strengths for a two orbital model of the Fe-pnictides. arXiv: 0804.4332v2 (2008).
[148] S. Graser, T. A. Maier, P. J. Hirschfeld and D. J. Scalapino. Near-degeneracy of several pairing channels in multiorbital models for the Fe-pnictides. New J. Phys. 11, 025016 (2009).
[149] M. Iizumi, Y. Hamaguchi, K. Komatsubara and Y. Kato. Phase Transition in SnTe with Low Carrier Concentration. J. Phys. Soc. Jpn. 38, 443 (1975).
[150] Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S. Xu, Y. J. Wang, R. Sankar, F. Chou, A. Bansil, M. Z. Hasan, S. D. Wilson, L. Fu and V. Madhavan. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341, 1496 (2013).
[151] I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y. J. Wang, M. Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu and V. Madhavan. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 14, 318 (2015).
[152] C. Fang, M. J. Gilbert and B. A. Bernevig. Large-Chern-Number Quantum Anomalous Hall Effect in Thin-Film Topological Crystalline Insulators. Phys. Rev. Lett. 112, 046801 (2014).
[153] M. Serbyn and L. Fu. Symmetry breaking and Landau quantization in topological crystalline insulators. Phys. Rev. B 90, 035402 (2014).
[154] S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth and M. Z. Hasan. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616 (2012).
[155] C. Fang and L. Fu. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015).
[156] I. Zeljkovic, D.Walkup, B. Assaf, K. L Scipioni, R. Sankar, F. Chou and V. Madhavan. Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. Nat. Nanotechnol. 10, 849 (2015).
[157] J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera and L. Fu. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 13, 178 (2014).
[158] B. A. Bernevig and T. L. Hughes. Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
[159] S. Raghu, X.-L. Qi, C. Honerkamp and S.-C. Zhang. Topological Mott Insulators. Phys. Rev. Lett. 100, 156401 (2008).
[160] Effects of long-range Coulomb interaction should be examined further.
[161] A. J. Strauss. Inversion of Conduction and Valence Bands in Pb_(1-x)Sn_xSe Alloys. Phys. Rev. 157, 608 (1967).
[162] R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957).
[163] R. Landauer. Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970).
[164] J. Ding, Z. Qiao, W. Feng, Y. Yao and Q. Niu. Magnetic and Electronic Properties of Metal-Atom Adsorbed Graphene. Phys. Rev. B 84, 195444 (2011).
[165] D. K. Morr and N. A. Stavropoulos. Quantum interference between impurities: Creating novel many-body states in s-wave superconductors. Phys. Rev. B 67, 020502 (2003).
[166] Q.-H. Wang and D.-H. Lee. Quasiparticle scattering interference in high temperature superconductors. Phys. Rev. B 67, 020511 (2003).
[167] C. Bena, S. Chakravarty, J. Hu and C. Nayak. Quasiparticle scattering and local density of states in the d-density-wave phase. Phys. Rev. B 69, 134517 (2004).
[168] X. Zhou, C. Fang, W.-F. Tsai and J.-P. Hu. Theory of quasiparticle scattering in a two-dimensional system of helical Dirac fermions: Surface band structure of a three-dimensional topological insulator. Phys. Rev. B 80, 245317 (2009).
[169] W.-C. Lee, C. Wu, D. P. Arovas and S.-C. Zhang. Quasiparticle interference on the surface of the topological insulator Bi2Te3. Phys. Rev. B 80, 245439 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code