Responsive image
博碩士論文 etd-0621116-154921 詳細資訊
Title page for etd-0621116-154921
論文名稱
Title
利用銅 (Ⅰ) 及銠 (Ⅱ) 合成氮-雜環化合物
Copper (I) and Rhodium (II) Catalyzed Denitrogenative Reactions for the Synthesis of N-Heterocyclic Compounds
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
567
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-05
繳交日期
Date of Submission
2016-07-22
關鍵字
Keywords
氮雜環、乙烯亞胺、過渡金屬催化、類碳烯、環化反應
ketenimine, transition metal catalysis, N-heterocycles, carbenoids, cyclizations
統計
Statistics
本論文已被瀏覽 5837 次,被下載 1
The thesis/dissertation has been browsed 5837 times, has been downloaded 1 times.
中文摘要
本論文為開發以一價銅以及二價銠金屬之催化合成策略,過程中經由N-磺醯化-1,2,3-三唑 (N-sulfonyl-1,2,3-triazoles) 化合物脫氮合成各種不同含氮之雜環化合物。利用一價銅催化反應,會經由N-磺醯化乙烯亞胺 (ketenimine)中間體,而以二價銠金屬催化,則會經由氮代乙烯銠化類碳烯 (aza vinyl rhodium carbenoid) 中間體,相對應兩種不同的反應過程。其中,成功地發展了以一價銅進行催化反應,從相對應的炔丙醯胺 (N-propargylamides) 化合物經由乙烯亞胺中間體,可以簡易地製備二氫嘧啶 (dihydropyrimidinone) 類似物的方法。這個合成策略同時也應用在從α-胺基酸合成β-胺基酸類似物。然後透過有效的銅/銠金屬催化反應,從N-炔丙基苯胺 (N-propargylanilines) 經由二價銠金屬催化脫氮環化 (N-sulfonyl-1,2,3-triazoles) 合成3-吲哚亞胺 (3-indolylimines)。最後,我們也展示了,利用一價銅催化經由乙烯亞胺中間體之合成策略,可以應用在合成所感興趣的醣類目標分子。這些過程顯示透過溫和且有效的反應條件,發展於合成各種廣泛的基材,特別是可以應用在多樣化小分子資料庫的合成。
Abstract
In this research, we have developed new methodologies to synthesize various N-heterocyclic compounds using copper (I) and rhodium (II) catalyzed denitrogenative reactions of N-sulfonyl-1,2,3-triazoles. While the usage of copper catalysts involves N-sulfonyl ketenimine intermediate, the rhodium (II) catalyst generates aza vinyl rhodium carbenoid intermediates. By utilizing copper (I) catalyzed N-sulfonyl ketenimine chemistry, a simple and convenient method to prepare dihydropyrimidinone analogues from the corresponding N-propargylamides was developed. This strategy was also applied in the synthesis of β-amino acids analogues from the equivalent α-amino acids. Later, an efficient Cu/Rh-catalyzed method was developed for the synthesis of 3-indolylimines from N-propargylanilines through Rh(II)-catalyzed denitrogenative annulation of N-sulfonyl-1,2,3-triazoles. Then, copper (I) catalyzed synthesis of 2,3-dihydroquinolinimines has been achieved by applying the N-sulfonyl ketenimine intermediate chemistry to the corresponding N-substituted propargyl anilines. Finally, we have also demonstrated that this copper (I) catalyst N-sulfonyl ketenimine chemistry can be applied in the synthesis of interesting sugar targets. The methods we have developed are consists of mild and effective reaction conditions promise a broad substrate scope particularly can be used in small molecular library and diversity oriented synthesis.
目次 Table of Contents
Table of Contents

Thesis Validation Certificate……………………………………………………….……………………i
Thesis Submission Certificate…………………………………………………………………………...ii
Acknowledgements...…………………………………………………………………………...……….iii
Keywords………...……………………………………………………………………………………….v
Abstract in Chinese……………………………………………………………………………………...vi
Abstract in English…………………………………………………………………………………..…vii
Preface………………………………………………………………………………….………………viii
List of Figures………………………………………………………………………….…….…….…...xiv
List of Schemes………………………………………………………………..……………………...…xv
List of Tables…………………………………………………………………………………………...xix
List of 1H, 13C NMR and HRMS spectra………………………………………...………..………..…xx
List of Abbreviations………………………………………………………………………….….....xxxix

Chapter 1:.………………………………………………………………………………..……….…...001
1.1Introduction………………………………………………………………………….……….......…001
1.2 Chemistry of α –diazocarbonyl compounds…………………………………………..……………002
1.2.1 Synthesis of α-diazocarbonyl compounds…………………………………………..…….……...003
1.2.2 Reactivity of α-diazocarbonyl compounds………………………………….………..……….….005
1.2.2.1 Insertion reactions……………………………………………….…….……………..…………007
1.2.2.2 Cyclopropanations…………………………………………………………….….…….………009
1.2.2.3 Reactions with aromatics……………………………………………………….….….………..010
1.3 Chemistry of α- imino diazo intermediate…………………………………………..….….……….012
1.3.1 Copper catalyst denitrogenative reactions via ketenimine intermediate………………….……...013
1.3.2 Modified CuAAC multicomponent reactions (MCR):………………………….………..………016
1.3.2.1 Detailed mechanistic studies………………………………………….…………..…………….019
1.3.2.2 Validity of ketenimine as a key intermediate………………………………….….……………020
1.3.2.3 Copper catalyzed ketenimine chemistry: Intermolecular multicomponent reactions……...……023
1.3.2.4 Intramolecular reactions of N-sulfonyl ketenimine intermediates…………………….………..028
1.4 Rhodium catalyst denitrogenative reactions of N-sulfonyl-1,2,3-triazoles…………….….………..032
1.4.1 Synthesis of N-sulfonyl triazoles…………………………………………………….….………..034
1.4.2 Reactions of N-sulfonyl-1,2,3-triazoles…………………………………………….…………….035
1.4.2.1 Insertion reactions………………………………………………………………….….………..037
1.4.2.2 Cyclopropanation reactions…………………………………………………………….………040
1.4.2.3 Transannulation/ Annulation/ Cyclization reactions…………………………………….……..042
1.5 Research motivation and objective…………………………………………….………………..…..046

Chapter 2: Cu(I)-catalyzed synthesis of dihydropyrimidin-4-ones toward the preparation of β- and β3- amino acid analogs …….………………………………………………………………….……………050
2.1 Introduction…………………………………………………………….…………….……….…….050
2.2 Results and discussion……………………………………………………………….……..……….053
2.3 Synthesis of β-Amino acids analogues……………………………………………….…………….061
2.4 Conclusion………………………………………………………………………………………….063
2.5 Experimental section and spectral data……………………………....………………….……..……063
2.5.1 General considerations…………….………………………………………….….………..……...063
2.5.2 General experimental procedures………………..…………………………..……….….……..064
2.5.3 Representative procedure for the preparation of Dihydropyrimid-4-ones……………………...064
2.5.4 Representative procedure for the preparation of β and β3 amino acid analogs (221-225)…...…071
2.5.5 Representative procedure for the hydrolysis of the dihydropyrimid-4-ones (226 & 227)………....073
2.5.6 Representative procedure for the preparation of chiral propargyl amides
from N-Boc-α-amino acids………………………………………..…………..….……………………075
.
Chapter 3: Synthesis of Substituted 3-Indolylimines and Indole-3-carboxaldehydes by Rhodium(II)-Catalyzed Annulation…………………………………………..………………………….……..….…087
3.1 Introduction……………………………………………………………………………….………..087
3.2 Results and discussion……………………………………………………………………..……….089
3.3 Conclusion.........................................................................................................................................096
3.4. Experimental Procedures and spectral data……………………………….……..………………...096
3.4.1. General considerations.………………………………..…………….…………………………..096
3.4.2 Representative procedure for the preparation of 3-Indolylimines:Synthesis
of (E)-4-methyl-N-((1-methyl-1H-indol-3-yl)methylene)benzenesulfonamide (228)…..……..…..097
3.4.3 Representative procedure for the preparation of Indole-3-carboxyaldehydes: Synthesis of 1-methyl-1H-indole-3-carbaldehyde (251)…….…………………………………………………099
3.4.4 3.4.4 Synthesis of 4-methyl-N-((1-methyl-1H-indol-3-yl)methyl)benzenesulfonamide…..…..100
3.4.5 Representative procedure for the preparation of N-sulfonyltriazoles: Synthesis of N-methyl-N-((1-tosyl-1H-1,2,3-triazol-4-yl)methyl)aniline (a-228)……………………...…………….…...102
3.4.6 Synthesis of N-methyl-N-(prop-2-ynyl)aniline (b-228)……....……………….………..……...104

Chapter 4: Synthesis of 2,3-Dihydroquinolin-4-imines by Cu(I)-Catalyzed Annulation via ketenimine intermediate….………………………………………………..……………………………..……..…..117
4.1 Introduction………………………………………………………………….…………………...…117
4.2 Results and Discussion…………………………………..………..……..………………………....120
4.2.1 Optimization of conditions for Cu (I)-catalyzed annulation……...……………………...………..120
4.2.2 Expansion of substrate scope……………………………………………...……………………..123
4.2.3 Synthetic applications of 2,3-dihydroquinolin-4-imines………………….………….…………..126
4.2.4 Photophysical properties of 2,3-dihydroquinolin-4-imines……………………….……….……..127
4.3 Conclusion……………………………………………………………………..…………….….….130
4.4 Experimental Procedures and spectral data………………………….…………...……..….……….131
4.4.1 General considerations……………………………………………………………..…..…………131
4.4.2 Representative procedure for the synthesis of compound 258………………………….….....….132
4.4.3 Synthesis of N-(1-benzyl-7-methoxy-1,2,3,4-tetrahydroquinolin-4-yl)-4-methylbenzenesulfonamide (284)……………………………..…………….……..…………..136
4.4.4 Representative procedures for the synthesis of 3-methoxy-N-(4-methoxyphenyl)aniline (b-260)……………………………………………………………………………..………….…...137
4.4.5 Representative procedures for the synthesis of 3-methoxy-N-(4-methoxyphenyl)aniline (a-260)………………………………………………………….………….………………………………138
4.4.6 Reaction procedure for the synthesis of compound 290………………………………..………....140
4.4.7 Reaction Procedure for the synthesis of compound 291…………..…………………………....…141

Chapter 5: Copper (I) catalyzed synthesis of 2-deoxy imino sugar analogues and 2-deoxy aldonolactones via ketenimine intermediate ..……………………….……………………..…………………………..161
5.1 Introduction………………………………………………………..…………….………….….…..161
5.2 Results and discussion………………………………………………..…………..…..…….………166
5.3 2D NMR experiment explanation for the compound 328……………..….…….……….…………172
5.4 Conclusion……………………………………………………….……………………….……..….176
5.4 Experimental Procedures…………………………………….…….……..….…………….……….176
5.4.1 General Considerations……………….…………………….…………………….…….…..…….176
5.4.2 Reaction procedure for the synthesis of compound 328………………………………..…....……177
5.4.3 Reaction procedure for the synthesis of compound 340……………………………..……………178
5.4.4 Reaction procedure for the synthesis of compound 322 & 323………………………...….………175
5.4.5 Reaction procedure for the synthesis of compound 324.…………………….………………..…..182
5.4.6 Reaction procedure for the synthesis of compound 325…………………...……………….……..183
5.4.7 Reaction procedure for the synthesis of compound 326…………………….…..……….…..……185
5.4.8 Reaction procedure for the synthesis of compound 327……………………………..……………186
5.4.9 Spectral Data………………………………………………………………….…………………..187


Chapter 6: Conclusions and perspectives………………………..…….………………….…………..198
6.1 Conclusions………………………………………………………………………………….……..199
6.2 Perspectives……………………………………………………………….…………..……………200
References………………………………………………………………………………………….…..202
參考文獻 References
1) Baumann. M; Baxendale. I. R. Beilstein J. Org. Chem. 2013, 9, 2265–2319.
2) Adrien. A. Advances in Heterocyclic Chemistry, United Kingdom Ed., 32, Academic Press, London, 1982, 30.
3) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061–3071.
4) Yates, P. J. Am. Chem. Soc. 1952, 74, 5376-5381.
5) Curtius, T. Ber. Dtsch. Chem. Ges. 1883, 16, 2230-2231.
6) Arndt, F.; Eistert, B.; Part.de, W. Ber. Dtsch. Chem. Ges. 1927, 60, 1364-1370.
7) Arndt, F.; Amende, J. Ber. Dtsch. Chem. Ges. 1928, 61, 1122-1124.
8) Arndt, F.; Eistert, B.; Amende, J. Ber. Dtsch. Chem. Ges. 1928, 61, 1949-1953.
9) Regitz, M. Angew. Chem., Int. Ed. Engl. 1967, 6, 733-749.
10) Regitz, M. Synthesis 1972, 351-373.
11) Regitz, M.; Rater, J.; Liedhegener, A. Org. Synth. 1971, 51, 86-89.
12) Rao, Y. K.; Nagarajan, M. Indian J. Chem., Sect. B 1986, 25, 735-738.
13) Cava, M. P.; Litle, R. L.; Napier, D. R. J. Am. Chem. Soc. 1958, 80, 2257-2263.
14) Muchowski, J. M. Tetrahedron Lett. 1966, 7, 1773-1778.
15) Ye, T. Anthony, McKervey, M. A. Chem. Rev. 1994, 94, 1091-1160.
16) Taylor, T. W. J.; Foracey, L. A. J. Chem. Soc. 1930, 2272-2275.
17) Wolff, L.; Greulich, R. Ber. Dtsch. Chem. Ges. 1912, 45, 23-25.
18) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411–432.
19) Meier, U.-D. H.; Zeller, K.-P. Angew. Chem. Int. Ed. 1975, 14, 32-43.
20) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861-2903.
21) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091-1160.
22) Doyle, M.; McKervey, M.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998.
23) Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert A. J.; Teyssie, P. Tetrahedron Lett. 1973, 14, 2233–2236.
24) Paulissen, R.; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1974, 15, 607–608.
25) Moser, W. R. J. Am. Chem. Soc. 1969, 91, 1135-1140.
26) House, H. O.; FischerJr, W. F.; Gall, M.; McLaughlin, T. E.; Peet, N. P. J. Org. Chem. 1971, 36, 3429-3437.
27) Morilla, M. E.; Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C; Trofimenko, S.; Perez, P. J. Chem. Commun. 2002, 2998–2999.
28) Kitadani, M.; Ito, K.; Yoshikoshi, A. Bull. Chem. Soc Jpn. 1971, 44, 3431-3434.
29) Doyle, M. P.; Taunton, J.; Pho, H. Q. Tetrahedron Lett. 1989, 30, 5397-5400.
30) Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssil,Ph. Tetrahedron Lett. 1973, 14, 2233-2236.
31) Hubert, A. J.; Noels, A. F.; Anciaux, A. J.; Teyesil, Ph. Synthesis 1976, 600-602.
32) Yates, P. J. Am. Chem. Soc. 1962, 74, 5376-5381.
33) Paulissen, R.; Hayez, E.; Hubert, A. J.; Teyssil, Ph. Tetrahedron Lett. 1974, 15, 607-608.
34) Polozov, A. M.; Polezhaeva, N. A.; Mustaphin, A. H.; Khotinen, A. V.; Arbuzov, B. A. Synthesis 1990, 515-517.
35) Bagheri, V.; Doyle, M. P.; Taunton, J.; Claxton, E. E. J. Org. Chem. 1988, 53, 6158-6180.
36) Brookhart, M.; Studabaker, W. B. Chem. Rev., 1987, 87, 411-432.
37) Kang, S. H.; Kim, W. J.; Chae, Y. B. Tetrahedron Lett. 1988, 29, 5169-5172.
38) Wenkert, E.; Greenberg, R.; Kim, H. Hel. Chim. Acta 1987, 70, 2159-2165.
39) Buchner, E.; Curtius, T. Ber. Dtsch. Chem. Ges. 1885, 18, 2377–2379.
40) Costantino, A.; Linstrumelle, G.; Julia, S. Bull. Soc. chim. Fr. 1970, 907-908.
41) Ledon. H.; Cannic, G.; Linstrumelle, G.; Julia, S. Tetrahedron Lett. 1970, 11, 3971-3974.
42) McKervey, M. A.; Ruseell, D. N.; Twohig, M. F. J. Chem. Soc. Chem. Commun. 1986, 491-494.
43) Duddeck, H.; Ferguson, G.; Kaitner, B.; Kennedy, M.; McKervey, M. A.; Maguire, A. R. J. Chem. Soc. Perkin Trans. 1 1990, 1055-1063.
44) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang. S. Chem. Asian J. 2011, 6, 2618 – 2634.
45) Gulevich, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed. 2013, 52, 2–5.
46) Beletskaya, I. P.; Cheprakov. A. V. Coord. Chem. Rev. 2004, 248, 2337–2364.
47) Gaetke, L. M.; Chow-Johnson, H. S.; Chow, C. K. Arch. Toxicol. 2014, 88, 1929-1938.
48) Guo, X.-X.; Gu. D.-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622–1651.
49) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887-2902.
50) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M. Chem. Rev. 2008, 108, 2796-2823.
51) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1470.
52) Ullmann, F.; Bielecki, J.Chemische Berichte 1901, 34, 2174–2185
53) Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38, 2211-2212.
54) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691-1692.
55) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302–1315.
56) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 2002, 41, 2596-2599.
57) Tornøe, C. W; Christensen, C.; Meldal, M. J. Org. Chem, 2002, 67, 3057-3064.
58) Huisgen, R. (1961). "Centenary Lecture - 1,3-Dipolar Cycloadditions". Proceedings of the Chemical Society of London: 357
59) Bae, I.; Han, H.; Chang. S. J. Am. Chem. Soc. 2005, 127, 2038-2039.
60) Cho, S. H.; Yoo, E. J.; Bae,.I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046-16047.
61) Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. Org. Lett. 2006, 8, 1347-1350.
62) Yoo, E.J; Ahlquist, M.; Bae, I; Sharpless, K. B; Fokin, V. V.; Chang. S. J. Org. Chem. 2008, 73, 5520-5528.
63) Raap, R. Can. J. Chem. 1971, 49, 1792-1798.
64) Cassidy, M. P.; Raushel, J.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 3154-3157.
65) Whiting, M.; Fokin, V. V Angew. Chem. Int. Ed. 2006, 45, 3157-3161.
66) Cui, S.-L.; Wang, J.; Wang, Y. G. Org. Lett. 2007, 9, 5023-5025.
67) Shang, Y.; Ju, K.; He, X.; Hu, J.; Yu, S.; Zhang, M.; Liao, K.; Wang, L.; Zhang, P. J. Org. Chem. 2010, 75, 5743–5745.
68) Jiang, Z.; Lu, P.; Wang. Y. Org. Lett. 2012, 14, 6266-6269.
69) Xing, Y.; Cheng, B.; Wang, J.; Lu, P.; Wang, Y. Org. Lett. 2014, 16, 4814−4817.
70) Yao, W.; Pan, L.; Zhang, Y.; Wang, G.; Wang, X; Ma, C. Angew. Chem. Int. Ed. 2010, 49, 9210 –9214.
71) Xu, X.; Cheng, D.; Li, J.; Guo, H.; Yan. J. Org. Lett. 2007, 9, 1585-1587.
72) Li, B. -S.; Yang, B. -M.; Wang, S.-H.; Zhang, Y.-Q.; Cao, X.-P.; Tu, Y.-Q. Chem. Sci. 2012, 3, 1975–1979.
73) Cano, I.; Álvarez, E.; Nicasio, M. C.; Pérez, P. J. J. Am. Chem. Soc. 2011, 133, 191–193.
74) Husmann, R.; Na, Y. S.; Bolm, C.; Chang, S. Chem. Commun. 2010, 46, 5494–5496.
75) Kumar, G. R.; Kumar, Y. K; Kant, R.; Reddy, M. S. Beilstein J. Org. Chem. 2014, 10, 1255–1260.
76) She, J.; Jiang, Z.; Wang, Y. Synlett 2009, 2023-2027.
77) Cui, S.-L.; Wang, J.; Wang, Y.-G. Tetrahedron 2008, 64, 487-492.
78) Yoo, E. J.; Chang, S. Org. Lett. 2008, 10, 1163-1166.
79) Murugavel, G.; Punniyamurthy, T. Org. Lett. 2013, 15, 3828–3831.
80) Chen, Z.; Ye, C.; Gao, L.; Wu. J. Chem. Commun. 2011, 47, 5623–5625.
81) Li, S.; Wu. J. Chem. Commun. 2012, 48, 8973–8975.
82) Li, S.; Wu. J. Org. Lett. 2011, 13, 4312-4315.
83) Xu, H.-D.; Jia, Z.-H.; Xu, K.; Han, M.; Jiang, S.-N.; Cao, J.; Wang, J.-C; Shen, M.-H. Angew. Chem. Int. Ed. 2014, 53, 9284 –9288.
84) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972-14974.
85) Dimroth, O. Ann. Chem. 1909, 364, 183-226.
86) Gilchrist, T. L.; Gymer, G. E. Adv. Heterocycl. Chem. 1974, 16, 33-85.
87) Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Angew. Chem., Int. Ed. 2007, 46, 1730–1733.
88) Raushel. J.; Fokin,V. V. Org. Lett. 2010, 12, 4952–4955.
89) Liu, Y.; Wang, X.; Xu, J.; Zhang, Q.; Zhao. Y.; Hu, Y. Tetrahedron 2011, 67, 6294–6299.
90) Chuprakov, S.; Malik, J. A.; Zibinsky,M.; Fokin, V. V. J. Am. Chem. Soc. 2011, 133, 10352-10355.
91) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 194-196.
92) Miura, T.; Tanaka, T.; Biyajima, T.; Yada, A.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 3883-3886.
93) Miura, T.; Tanaka, T.; Yada, A; Murakami, M. Chem. Lett. 2013, 42, 1308-1310
94) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. J. Am. Chem. Soc. 2014, 136, 195-202.
95) Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6802-6805.
96) Parr, B. T.; Green, S. A.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 4716-4718.
97) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 13652-13655.
98) Grimster, N.; Zhang, L.; Fokin, V. V. J. Am. Chem. Soc. 2010, 132, 2510-2511.
99) Alford. J. S.; Davies, H. M. L. Org. Lett. 2012, 14, 6020-6023.
100) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972-14974.
101) Chattopadhyay, B.; Gevorgyan, V. Org. Lett. 2011, 13, 3746-3749.
102) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52, 1507-1510.
103) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am. Chem. Soc. 2013, 135, 4652-4655.
104) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 11712-11715.
105) Schultz, E. E.; Sarpong, R. J. Am. Chem. Soc. 2013, 135, 4696-4699.
106) Shi, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 5394-5396.
107) Miura, T.; Funakoshi, Y.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 2272-2275.
108) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360-413.
109) Kappe, C.O. Tetrahedron 1993, 49, 6937-6946.
110) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043-1052.
111) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Science 1999, 286, 971-974.
112) Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; Brosse, C. D.; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; Hertzberg, R. P.; Johnson, R. K.; Westley, J. W.; Potts, B. C. J. Org. Chem. 1995, 60, 1182-1188.
113) Mai, A.; Sbardella, G.; Artico, M.; Ragno, R.; Massa, S.; Novellino, E.; Greco, G.; Lavecchia, A.; Musiu, C.; La Colla, M.; Murgioni, C.; La Colla, P.; Loddo, R. J. Med. Chem. 2001, 44, 2544-2554.
114) (a) Kunio, I.; Yoshiko, K.; Yuji, H. J. Heterocyclic Chem. 2005, 42, 583-588. (b) Weis, A.; Frolow, F.; Zamir, D.; Bernstein, M. Heterocycles 1984, 22, 657-661. (c) Einsiedel, J.; Hubner, H.; Gmeiner, P. Bioorg. Med. Chem. Lett. 2003, 13, 851-854.
115) (a) Yoo, E. J.; Chang, S. Curr. Org. Chem. 2009, 13, 1766-1776. (b) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Chem. Asian J. 2011, 6, 2618-2634. (c) Li, S.; Wu, J. Chem. Commun. 2012, 48, 8973-8975.
116) Cheng. G.; Cui, X. Org. Lett. 2013, 15, 1480-1483.
117) (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285-2288. (b) Cui, L.; Li, C.; Zhang, L. Angew. Chem. Int. Ed. 2010, 49, 9178 -9181. (c) Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Org. Lett. 2001, 3, 2501-2504. (d) Bacchi, A.; Costa, M.; Gabriele, B.; Pelizzi, G.; Salerno, G. J. Org. Chem. 2002, 67, 4450-4457. (e) Bacchi, A.; Costa, M.; Della Cà, N.; Gabriele, B.; Salerno, G.; Cassoni, S. J. Org. Chem. 2005, 70, 4971-4979. (f) Beccalli, E.M.; Borsini, E.; Broggini, G.; Palmisano, G.; Sottocornola, S. J. Org. Chem. 2008, 73, 4746-4749. (g) Jin, C.; Burgess, J. P.; Kepler, J. A.; Cook, C. E. Org. Lett. 2007, 9, 1887-1890. (h) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem. Commun. 2004, 2712-2713.
118) (a) Hashmi, A. S. K; Schuster, A. M.; Schmuck, M.; Rominger, F. Eur. J. Org. Chem. 2011, 4595-4602. (b) Hashmi, A. S. K.; Schuster, A. M.; Rominger, F. Angew. Chem. Int. Ed. 2009, 48, 8247-8249.
119) Jin, C; Burgess, J. P; Kepler, J. A; Cook, C. E. Org. Lett. 2007, 9, 1887-1890.
120) (a) Nussbaum, F. V.; Spiteller, P. Highlights in Bioorganic Chemistry: Methods and Application, ed. Schmuck, C.; Wennemers, H. Wiley-VCH, Weinheim, 2004, p. 63. (b) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015-2022.
121) Shinagawa, S.; Kanamaru, T.; Harada, S.; Asai, M.; Okazaki, H. J. Med. Chem. 1987, 30, 1458-1463.
122) Enantioselective Synthesis of β-Amino Acids; Juaristi, E., Ed.; Wiley-VCH: New York, 1997.
123) (a) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 25, 117-128. (b) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 1-15.
124) For reviews: (a) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991-8035 (b) Ma, J. A. Angew. Chem. Int. Ed. 2003, 42, 4290-4299.
125) (a) Gray, D.; Concellón, C.; Gallagher, T. J. Org. Chem. 2004, 69, 4849-4851. (b) Fuller, A. A.; Chen, B.; Minter, A. R.; Mapp, A. K. J. Am. Chem. Soc. 2005, 127, 5376-5383. (c) Sibi, M. P.; Patil, K. Tetrahedron:Asymmetry 2006, 17, 516-519. (d) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048-6049. (e) Sleebs, B. E.; Hughes, A. B. J. Org. Chem. 2007, 72, 3340-3352.
126) (a) Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. Helv. Chim. Acta. 1996, 79, 913-941. (b) Müller, E. P. E.; Brössner, D.; Maslouh, N.; Takó, A. Helv. Chim. Acta. 1998, 81, 59-65. (c) Guichard, G.; Abele, S.; Seebach, D.; Helv. Chim. Acta. 1998, 81, 187-206. (d) Yuan, C.; Williams, R. M. J. Am. Chem. Soc. 1997, 119, 11777-11784. (e) Yang, H.; Foster, K.; Stephenson, C. R. J.; Brown, W.; Roberts, E. Org. Lett. 2000, 2, 2177-2179.
127) Caputo, R.; Cassano, E.; Longobardo, L.; Palumbo, G. Tetrahedron 1995, 51, 12337-12350.
128) Byrne, C. M.; Church, T. L.; Kramer, J. W.; Coates, G. W. Angew. Chem. Int. Ed. 2008, 47, 3979-3983.
129) (a) Sundberg, R. J. The Chemistry of Indoles, Academic Press, New York, 1970; Sundberg, R. J. Indoles, Academic Press, London, 1996. (b) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620-6662. (c) Shirinzadeh, H.; Eren, B.; Orhan, H. G.; Suzen, S.; Ozden, S. Molecules 2010, 15, 2187-2202. (d) Barden, T. C. Top Heterocycl Chem, 2011, 26, 31-46.
130) (a) Sharma, V.; Kumar, P.; Pathak, D. J. Heterocyclic Chem. 2010, 47, 491-502. (b) Biswal, S.; Sahoo, U.; Sethy, S.; Kumar, H. K. S.; Banerjee, M. Asian J Pharm Clin Res. 2012, 5, 1-6.
131) (a) Saxton, J.E. Monoterpenoid indole alkaloids. In The Chemistry of Heterocyclic Compounds Part 4; John Wiley & Sons: Hoboken, NJ, USA, 2008. (b) Mehta, R.G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.; Gerhüser, C.; Pezzuto, J. M.; Moon, R.C.; Moriarty, R. M. Carcinogenesis 1995, 16, 399-404. (c) Ferreira, S.; Moncada, S.; Vane, J. Nat. New Biol. 1971, 231, 237. (d) Kawasaki, T.; Higuchi, K. Nat. Prod. Rep. 2005, 22, 761-793.
132) For recent reviews of indole synthesis, see (a) Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29-41. (b) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875-2911. (c) Taber, D. F.; Tirunahari, P. K, Tetrahedron 2011, 67, 7195-7210.
133) (a) Robinson, B. Chem. Rev. 1963, 63, 373-401. (b) Bischler, A. Ber. Dtsch. Chem. Ges. 1892, 25, 2860-2879. (c) Hemetsberger, H.; Knittel, D. Monatsh. Chem. 1972, 103, 194-204. (d) Bosco, M.; Dalpozzo, R.; Bartoli, G.; Palmieri, G.; Petrini, M. J. Chem. Soc. Perkin Trans. 2 1991, 651-655. (e) Batcho, A. D.; Leimgruber, W. Org. Synth. 1985, 63, 214-218. (f) Gasman, P. G.; Van Bergen, T. J.; Gruetzmacher, O. G. J. Am. Chem. Soc. 1973, 95, 6508-6509.
134) (a) Kruger, K.; Tillack, A.; Bellera, M. Adv. Synth. Catal. 2008, 350, 2153-2167 (b) Fukuyama, T.; Chen, X.; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127-3128. (c) Liu, F.; Ma, D. J. Org. Chem. 2007, 72, 4844-4850.
135) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920; and the references therein.
136) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074-2077.
137) (a) Stuart, D. R.; Laperle, M. B.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474-16475. (b) Kim, M.; Park, J.; Sharma, S.; Han, S.; Han, S. H.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Org. Biomol. Chem. 2013, 11, 7427-7434.
138) Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12426-12429.
139) Jones, C.; Nguyen, Q.; Driver, T. G. Angew. Chem., Int. Ed. 2014, 53, 785-788.
140) Saito, A.; Oda, S.; Fukaya, H.; Hanzawa, Y. J. Org. Chem. 2009, 74, 1517-1524.
141) (a) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 862-872 (b) Gulevich A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 1371-1373 (c) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972-14974 (d) Selander, N.; Worrell, B. T.; Fokin, V. V. Angew. Chem., Int. Ed. 2012, 51, 13054-13057.
142) Rajagopal, B.; Chen, Y.-Y.; Chen, C.-C.; Liu, X.-Y.; Wang, H.-R.; Lin, P.-C. J. Org. Chem. 2014, 79, 1254-1264.
143) (a) Gribble, G. W.; Pelcman, B. J. Org. Chem. 1992, 57, 3636-3642. (b) Ziegler, F. E.; Belema, M. J. Org. Chem. 1997, 62, 1083-1094.
144) (a) Coldham, I.; Dobson, B. C.; Fletcher, S. R.; Franklin, A. I. Eur. J. Org. Chem. 2007, 2676. (b) Lauchli, R.; Shea, K. J. Org. Lett. 2006, 8, 5287-5289. (c) Rodriguez, J. G.; Lafuente, A.; Almaraz, P. G. J. Heterocycl. Chem. 2000, 37, 1281-1288.
145) Wu, W.; Su, W. J. Am. Chem. Soc. 2011, 133, 11924-11927.
146) Li, L.-T.; Huang, J.; Li, H.-Y.; Wen, L.-J.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 5187-5189.
147) Yang, Y.-L.; Rajagopal, B.; Liang, C.-F.; Chen, C.-C.; Lai, H.-P.; Chou, C.-H.; Lee, Y.-P.; Yang, Y.-L.; Zeng, J.-W.; Ou, C.-L.; Lin, P.-C. Tetrahedron 2013, 69, 2640.
148) For examples of the usage of multi transition-metal catalysts in a domino transformation: Zhang, L.; Sonaglia, L.; Stacey, J.; Lautens, M. Org. Lett. 2013, 15, 2128-2131; and the references therein.
149) Gomtsyan. A. Chem. Heterocycl. Compd. 2012, 48, 7-10.
150) (a) Andersson, M, I.; MacGowan, A. P. J. Antimicrob. Chemother. 2003, 51, 1-11; (b) Heeb, S.; Fletcher, M. P.; Chhabra, S. R.; Diggle, S. P.; Williams, P.; Camara, M. C. FEMS Microbiol. Rev., 2011, 35, 247–274.
151) Michel, S.; Tillequin, F. Stud. Nat. Prod. Chem. 1997, 20, 789-815.
152) Liu, J.; Wang, Y.; Sun, Y.; Marshall, D.; Miao, S.; Tonn, G.; Anders, P.; Tocker, J.; Tang, H. L.; Medina, J. J. Bioorg. Med. Chem. Lett. 2009, 19, 6840–6844.
153) Zhang, S. –X.; Feng, J.; Kuo, S.-C.; Brossi, A.; Hamel, E.; Tropsha, A.; Lee, K.-H. J. Med. Chem. 2000, 43, 167–176.
154) (a) Tökés, A. L.; Szilágyi, L. Synth. Commun. 1987, 17, 1235–1245; (b) Tökés, A. L.; Litkei, G.; Szilágyi, L. Synth.Commun. 1992, 22, 2433–2445; (c) Kumar, K. H.; Muralidharan, D.; Perumal. P. T. Synthesis 2004, 1, 63–68; (d) Varma, R. S.; Saini, R. K. Synlett. 1997, 857–858; (e) Ahmed, N.; Lier, J. E. V. Tetrahedron Lett. 2006, 47, 2725–2729; f) Ahmed, N.; Lier, J. E. V. Tetrahedron Lett. 2007, 48, 13–15.
155) Solé, D.; Mariani, F.; Fernández, I.; Sierra. M. A. J. Org. Chem. 2012, 77, 10272−10284
156) Liu, X.; Lu, Y. Org. Lett. 2010, 12, 5592–5595.
157) Bunce, R. A.; Schammerhorn, J. E. J. Heterocycl. Chem. 2013, 50, 373–380.
158) Chou, C.-H.; Chen, Y.-Y.; Rajagopal, B.; Tu, H. –C.; Chen, K, -L.; Wang, S. –F.; Liang, C, -F.; Tyan, Y.-C.; Lin, P.-C. Chem Asian J, 2016, 11, 757-765.
159) Cheng, G.; Cui, X. Org. Lett. 2013, 7, 1480-1483.
160) Sun, L.; Zhu, Y.; Lu, P. Wang, Y. Org. Lett. 2013, 15, 5894-5897.
161) Li, S.; Luo, Y.; Wu. J. Org. Lett. 2011, 13, 3190−3193.
162) (a) Mendoza, P. D.; Echavarren, A. M. Pure Appl. Chem, 2010, 82, 801–820; (b) Kitamura, T. Eur. J. Org. Chem. 2009, 1111–1125; (c) Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009, 5075–5087.
163) Frederickson, C.J.; Kasarskis E.J.; Ringo. D; Frederickson, R.E. J. Neurosci. Methods 1987, 20, 91-103.
164) (a) Xue, L.; Li, G.; Zhu, D.; Liu, Q.; Jiang, H. Inorg. Chem. 2012, 51, 10842-10849; (b) Xue, L.; Li, G.; Yu, C.; Jiang, H. Chem. Eur. J. 2012, 18, 1050-1054.
165) Chauhan, D. P.; Varma, S. J.; Vijeta, A.; Banerjee. P.; Talukdar, P. Chem. Commun. 2014, 50, 323-325.
166) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.; Kuo, S. C.; Hamel, E.; Hackl, T.; Lee, K. H. J. Med. Chem. 1998, 41, 1155–1162.
167) Sridharan, V.; Suryavanshi, P. A.; Menendez, J. C.; Chem. Rev. 2011, 111, 7157–7259
168) (a) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2013, 42, 622; (b) Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973-984.
169) Klymchenko, A. S.; Pivovarenko, V. G.; Demchenko, A. P. J. Phys. Chem. A. 2003, 107, 4211-4216.
170) Yip, V. L. Y.; Withers, S. G. Org. Biomol. Chem. 2004, 2, 2707-2713.
171) S. Roseman, J. Biol. Chem. 2001, 276, 41527–41542.
172) Monrad, R. N.; Madsen. R. Tetrahedron 2011, 67, 8825-8850.
173) Kiliani, H. Ber. Dtsch. Chem. Ges. 1886, 19, 767-772.
174) Dromowicz, M.; Koll, P. Carbohydr. Res. 1998, 308, 169-171.
175) Krishna, P. R.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897-2912.
176) Stallforth, P.; Adibekian, A.; Seeberger, P. H. Org. Lett. 2008, 10, 1573-1576.
177) Davies, S. G.; Nicholson, R. L.; Smith, A. D. Org. Biomol. Chem. 2005, 3, 348-359.
178) Gueyrard, D.; Haddoub, R.; Salem, A.; Bacar, N. S.; Goekjian, P. G. Synlett 2005, 520-522.
179) Sarabia, F.; Lopez-Herrera, F. J. Tetrahedron Lett. 2001, 42, 8801-8804.
180) Barton, D. H. R.; Liu, W. Tetrahedron Lett. 1997, 38, 367-370.
181) Kim, B. G.; Schilde, U.; Linker, T. Synthesis 2005, 1507-1513.
182) Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040-16041.
183) Boultadakis-Arapinis, M.; Lemoine, P.; Turcaud, S.; Micouin, L.; Lecourt, T. J. Am. Chem. Soc. 2010, 132, 15477-15479.
184) Kikelj, V.; Plantier-Royon, R.; Portella, C. Synthesis 2006, 1200-1204.
185) Winzar, R.; Philips, J.; Kiefel, M. J. Synlett 2010, 583-586.
186) Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S; Chen, Xi. Chem. Rev. 2016, 116, 3086–3240.
187) Winchester, B. G. Tetrahedron: Asymmetry 2009, 20, 645–651.
188) Compain, P.; Chagnault, V.; Martin, O. R. Tetrahedron: Asymmetry 2009, 20, 672–711.
189) Goujon, J.-Y.; Gueyrard, D.; Compain, P.; Martin, O. R.; Ikeda, K.; Kato, A.; Asano, N. Bioorg. Med. Chem. 2005, 13, 2313-2324.
190) Fan, J.-Q.; Ishii, S.; Asano, N.; Suzuki, Y. Nat. Med. 1999, 5, 112-115.
191) Xu, H.-D., Jia, Z.-H., Xu, K., Han, M., Jiang, S.-N., Cao, J., Wang, J.-C. and Shen, M.-H. Angew. Chem. Int. Ed. 2014, 53, 9284–9288.
192) Chen, Y. Y.; Chen, K. L.; Tyan, Y. C.; Liang, C. F.; Lin, P. C. Tetrahedron 2015, 71, 6210-6218.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.134.102.182
論文開放下載的時間是 校外不公開

Your IP address is 3.134.102.182
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code