Responsive image
博碩士論文 etd-0621117-135318 詳細資訊
Title page for etd-0621117-135318
論文名稱
Title
氧化物基底電阻式記憶體(RRAM) RESET動態過程機制研究
Study on Reset Dynamic Switching Mechanisms of Oxide-based Resistance Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-16
繳交日期
Date of Submission
2017-07-21
關鍵字
Keywords
電場效應、高阻態、快速量測、電阻式記憶體、熱效應
fast IV, thermal effect, HRS, electrical field effect, RRAM
統計
Statistics
本論文已被瀏覽 5642 次,被下載 29
The thesis/dissertation has been browsed 5642 times, has been downloaded 29 times.
中文摘要
觀察文獻中電阻式記憶體(RRAM)操作的方式多半是利用從小電壓慢慢加大的Double Sweep,本研究認為Reset應該是一個動態的過程,推測在慢慢升壓的過程應該會影響氧離子與阻絲的反應,因此,改變RRAM的量測手法,採用直接給予最大電壓的Single Sweep進行Reset行為,發現此量測手法可以得到更好的高阻態(HRS)電阻值,並利用快速量測(Fast IV)技術對元件進行脈衝Reset,設計不同波型以改變升壓時間(Rising time)模擬Single/Double Sweep,發現升壓時間短的波型,能夠以更少的能量得到更高的阻值,在經由COMSOL模擬能夠發現,若直接施加最大電壓,能夠擁有最大的等效電場範圍,可以吸引更多氧離子進行Reset行為,而得到更好的高阻態阻值[1]。
根據以上實驗,可以得知當升壓時間(Rising time)越短,能夠得到更高的阻值,但是根據先前實驗室的研究成果,發現在Rising time越長,能夠得到更高的阻值[2]。經過比較後可以發現,兩者Rising time的範圍不同,本研究利用Fast IV改變升壓時間以包含兩者實驗數據,認為升壓時間(Rising time)對於Reset行為的影響,可以分為兩種機制:熱效應、電場效應。
在Rising time極短的情況下,由電場效應主導,在這個區間Rising time越短能夠得到較高的HRS阻值;在Rising time極長的情況下,由熱效應主導,在這個階段Rising time越長能夠得到較高的阻值。
接著,利用不同Rising time以及降壓時間(Falling time)的搭配,進行Reset行為,得到在電場效應下,Falling time的長短能夠影響HRS的大小,而在熱效應下,Falling time的長短則沒有影響。藉此,得到對於Reset行為而言,理想的三角脈衝波是需要短的升壓時間(Rising time)以及長的降壓時間(Falling time)。
Abstract
In this study, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. Compared with traditional double sweep method, the device exhibited a larger memory window when using a single voltage sweep method during reset process. The phenomenon was verified by using fast I–V measurement to simulate the two operating methods. In this work, the device applied with a very short rising time pulse was found to get a better high resistance state (HRS) and lower power consumption. Furthermore, we proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.
During operation with gradually increased voltage, range of effective electric field is limited due to the filament dissolution, caused by attracted oxygen ions under electric field. In the contrast, better high resistance state (HRS) can be acquired when directly applying the max voltage of device because the device obtains the biggest range of effective field and more oxygen ions could be drawn to undergo reset process.
According to the above experiments, shorter rising time leads to higher resistance state of device. However, the result we’ve got before was contrast; longer rising time can get a higher resistance. Therefore, we tried to figure out the differences between two experiments. After comparison, we found that the ranges of rising time of two experiments are different. We used Fast IV system to change the Rising time, including both experimental data, and discovered that the resistance state of device is not only resulted from one mechanism. It is considered that the effect of Rising time on Reset behavior can be divided into two mechanisms: thermal effect and electric field effect.
In the case of extremely short rising time, the oxygen ions of device dominated by electric filed effect, leading to switching to better HRS at shorter pulse rising time. Contrast, in the case of extremely long rising time, the oxygen ions of device dominated by thermal effect. At this condition, longer rising time can control more oxygen ions, achieving the better resistance.
Moreover, this work found out that the effects of falling time at two cases (electric field effect and thermal effect) are different. Under electric field effect, the variation of falling time would change the values of HRS of RRAM, which achieving higher HRS of RRAM at longer falling time. However, this phenomenon doesn’t exist under the condition of thermal effect. Therefore, both of extremely short rising time and long enough falling time are needed for an ideal triangle pulse waveform.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄: xii
第一章 序論 1
1.1. 前言 1
1.2. 研究目的與動機 2
第二章 文獻回顧 3
2.1 次世代非揮發性記憶體 3
2-1-1 鐵電式隨機存取記憶體(FeRAM) 3
2-1-2 磁阻式記憶體(MRAM) 5
2-1-3 相變化記憶體(PCRAM) 6
2-1-4 電阻式記憶體(RRAM) 6
2.2 電阻式記憶體材料 10
2-2-1 高分子材料 10
2-2-2 過渡金屬氧化物 10
2-2-3 鈣鈦礦 10
2.3 電阻式記憶體切換機制 11
2-3-1 阻絲理論(Filament-type theory) 11
2-3-2 介面效應 (Interface-type theory) 13
2.4 絕緣體載子傳導機制 13
2-4-1 歐姆傳導(Ohmic conduction) 14
2-4-2 普爾-法蘭克發射(Poole-Frenkel emission) 15
2-4-3 蕭基發射(Schottky emission) 16
2-4-4 空間電荷限制電流(Space charge limited current) 17
2-4-5 穿隧(Tunneling) 19
第三章 實驗設備 20
3.1. 製程設備 20
3-1-1 多靶磁控濺鍍系統 (Multi-Target Sputter) 20
3.2. 材料分析設備 21
3-2-1 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer) 21
3-2-2 N&K薄膜特性分析儀 (N & K Analyzer) 23
3.3. 電性量測設備 25
3-3-1 半導體精準電性量測系統 25
第四章 1T1R元件量測方法 27
4.1. 1T1R元件 27
4.2. 電性量測方式 27
第五章 改變電性量測手法對Reset過程的影響 29
5.1 實驗動機 29
5.2 電性量測結果比較 30
5.3 Fast IV電性分析 36
5.4 COMSOL模擬以及物理機制分析 38
第六章 Rising Time對Reset行為的影響與分析 40
6.1 實驗動機 40
6.2 Rising Time對Reset行為與HRS的關係 44
6.3 實驗結果與討論 54
第七章 Rising and Falling time對於Reset行為的物理意義 56
7.1 Falling time對於Reset行為的影響 56
7.2 三角脈衝波形的mapping 56
7.3 實驗結果及討論 58
第八章 結論 69
參考文獻 71
參考文獻 References
[1] C. H. Pan, T. C. Chang, T. M. Tsai, K. C. Chang, T. J. Chu, W. Y. Lin, M. C. Chen, and S. M. Sze, “Confirmation of filament dissolution behavior by analyzing electrical field effect during reset process in oxide-based RRAM,” Applied Physics Letters, vol. 109, no. 13, pp. 4, Sep, 2016.
[2] T. J. Chu, T. C. Chang, T. M. Tsai, H. H. Wu, J. H. Chen, K. C. Chang, T. F. Young, K. H. Chen, Y. E. Syu, G. W. Chang, Y. F. Chang, M. C. Chen, J. H. Lou, J. H. Pan, J. Y. Chen, Y. H. Tai, C. Ye, H. Wang, and S. M. Sze, “Charge Quantity Influence on Resistance Switching Characteristic During Forming Process,” Ieee Electron Device Letters, vol. 34, no. 4, pp. 502-504, Apr, 2013.
[3] T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Materials Today, vol. 14, no. 12, pp. 608-615, Dec, 2011.
[4] C. J. Chen, H. J. Yen, W. C. Chen, and G. S. Liou, “Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties,” Journal of Materials Chemistry, vol. 22, no. 28, pp. 14085-14093, 2012.
[5] J. C. Bruyere, and B. K. Chakraverty, “SWITCHING AND NEGATIVE RESISTANCE IN THIN FILMS OF NICKEL OXIDE,” Applied Physics Letters, vol. 16, no. 1, pp. 40-+, 1970.
[6] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze, “Resistance random access memory,” Materials Today, vol. 19, no. 5, pp. 254-264, 2016.
[7] J. F. Scott, C. A. P. Dearaujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, T. Ueda, D. Ueda, and G. Kano, “FERROELECTRIC THIN-FILMS IN INTEGRATED MICROELECTRONIC DEVICES,” Ferroelectrics, vol. 133, no. 1-4, pp. 47-60, 1992.
[8] Y. M. Coic, O. Musseau, and J. L. Leray, “A STUDY OF RADIATION VULNERABILITY OF FERROELECTRIC MATERIAL AND DEVICES,” Ieee Transactions on Nuclear Science, vol. 41, no. 3, pp. 495-502, Jun, 1994.
[9] K. Inomata, “Present and future of magnetic RAM technology,” Ieice Transactions on Electronics, vol. E84C, no. 6, pp. 740-746, Jun, 2001.
[10] B. Heinrich, “Magnetic nanostructures. From physical principles to spintronics,” Canadian Journal of Physics, vol. 78, no. 3, pp. 161-199, Mar, 2000.
[11] L. Wang, C. H. Yang, and J. Wen, “Physical Principles and Current Status of Emerging Non-Volatile Solid State Memories,” Electronic Materials Letters, vol. 11, no. 4, pp. 505-543, Jul, 2015.
[12] D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb, and K. W. Yi, “One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F(2) memory cell (F=0.15 mu m),” Journal of Applied Physics, vol. 94, no. 5, pp. 3536-3542, Sep, 2003.
[13] J. C. Scott, and L. D. Bozano, “Nonvolatile memory elements based on organic materials,” Advanced Materials, vol. 19, no. 11, pp. 1452-1463, Jun, 2007.
[14] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, no. 6, pp. 28-36, Jun, 2008.
[15] H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal-Oxide RRAM,” Proceedings of the Ieee, vol. 100, no. 6, pp. 1951-1970, Jun, 2012.
[16] J. T. Evans, and R. Womack, “AN EXPERIMENTAL 512-BIT NONVOLATILE MEMORY WITH FERROELECTRIC STORAGE CELL,” Ieee Journal of Solid-State Circuits, vol. 23, no. 5, pp. 1171-1175, Oct, 1988.
[17] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letters, vol. 77, no. 1, pp. 139-141, Jul, 2000.
[18] T. J. Chu, “Study on Resistive Switching Mechanisms and Fabrication Technology of Advanced Resistance Random Access Memory (RRAM),” PhD Thesis, National Sun Yat-sen University, 2016.
[19] K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Applied Physics Letters, vol. 90, no. 24, pp. 3, Jun, 2007.
[20] J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin, W. W. Wu, and L. J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Letters, vol. 13, no. 8, pp. 3671-3677, Aug, 2013.
[21] T. C. Chang, S. T. Yan, C. H. Hsu, M. T. Tang, J. F. Lee, Y. H. Tai, P. T. Liu, and S. M. Sze, “A distributed charge storage with GeO2 nanodots,” Applied Physics Letters, vol. 84, no. 14, pp. 2581-2583, Apr, 2004.
[22] W.-C. Su, “Study on the Bionic Synapse Application of Lithium Aluminum Oxide Non-Volatile Resistive Random Access Memory ” Master Thesis, Department of Mechanical and Electro-Mechanical Engineering
National Sun Yat-sen University, 2015.
[23] P. Sigmund, “THEORY OF SPUTTERING .I. SPUTTERING YIELD OF AMORPHOUS AND POLYCRYSTALLINE TARGETS,” Physical Review, vol. 184, no. 2, pp. 383-+, 1969.
[24] H. Xiao, Introduction to Semiconductor Manufacturing Technology: Prentice Hall, 2001.
[25] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis: Cengage Learning, 2017.
[26] F. Berry, Chemical Bonding and Spectroscopy in Mineral Chemistry: Springer Netherlands, 2012.
[27] G. C. Shwartz, G. C. Schwartz, and K. V. Srikrishnan, Handbook of Semiconductor Interconnection Technology, Second Edition: CRC Press, 2006.
[28] T. J. Chu, T. M. Tsai, T. C. Chang, K. C. Chang, C. H. Pan, K. H. Chen, J. H. Chen, H. L. Chen, H. C. Huang, C. C. Shih, Y. E. Syu, J. C. Zheng, and S. M. Sze, “Ultra-high resistive switching mechanism induced by oxygen ion accumulation on nitrogen-doped resistive random access memory,” Applied Physics Letters, vol. 105, no. 22, pp. 4, Dec, 2014.
[29] Y. T. Su, K. C. Chang, T. C. Chang, T. M. Tsai, R. Zhang, J. C. Lou, J. H. Chen, T. F. Young, K. H. Chen, B. H. Tseng, C. C. Shih, Y. L. Yang, M. C. Chen, T. J. Chu, C. H. Pan, Y. E. Syu, and S. M. Sze, “Characteristics of hafnium oxide resistance random access memory with different setting compliance current,” Applied Physics Letters, vol. 103, no. 16, pp. 4, Oct, 2013.
[30] Y.-C. Li, “Study on Resistance Random Access Memory with Self-formed Selector,” Master Thesis, National Sun Yat-Sen University, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code