Responsive image
博碩士論文 etd-0621118-114836 詳細資訊
Title page for etd-0621118-114836
論文名稱
Title
電阻式記憶體於超臨界流體修復技術及高溫耐久性劣化之機制研究
Mechanism of Supercritical Fluid Repair Technology and Retention failure in RRAM
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-11
繳交日期
Date of Submission
2018-08-02
關鍵字
Keywords
電阻式記憶體、阻絲、資料耐久性、元件修復、劣化、超臨界流體
Conductive filament, Supercritical fluid (SCF), Resistive random access memory (RRAM), Retention, Failure, Electronic device repair
統計
Statistics
本論文已被瀏覽 5648 次,被下載 1
The thesis/dissertation has been browsed 5648 times, has been downloaded 1 times.
中文摘要
超臨界流體具有溶解度可作為溶劑攜帶物質、高滲透力能夠深入材料內部消除缺陷進行薄膜改質。半導體產業一般將超臨界流體用於清洗晶圓,本實驗室獨創將此技術應用在元件處理上。在本論文中,我們使用超臨界流體技術,將失效、無法操作的電阻式記憶體(RRAM),進行120°C、一小時的氧化處理,成功修復元件切換層的缺陷使之重新正常操作,根據電流傳導機制分析提出模型解釋此現象。
根據文獻及本實驗室研究,使用銦錫氧(ITO)材料作為RRAM的上電極,操作極性會與鉑(Pt)上電極相反,且操作電流及切換電壓較低,代表在能量消耗上會比較小。我們認為ITO有機會實際應用在商品中,因此也嘗試使用超臨界流體技術將無法操作的ITO電極RRAM進行超臨界流體氧化處理,修補ITO的氧空缺,而元件也成功恢復操作。我們希望未來將此低溫處理技術應用於批次處理,而且不只是RRAM,任何電子元件皆能利用此技術提升或恢復元件性能。
次世代記憶體在最近10年一直是熱門的研究題目,其中RRAM因為有著讀寫速度快、低耗能、高耐操度(Endurance)、長時間資料耐久性(Retention)的優點,極有潛力應用於車用電子產品中。而要做為車用產品,RRAM在高溫的穩定度是最重要的,因此目前所要釐清的問題之一是RRAM在高溫下的耐久性劣化機制。本論文使用台積電的1T1R元件,我們以單顆元件的電性來模擬整個陣列的狀態。在200°C、3小時的Retention測試中,發現高電阻態(HRS)幾乎沒有劣化,而低電阻態(LRS)電流愈小愈容易劣化。因為發生劣化的電流值位在次要分布區域,可以對應到在陣列中Retention不好是因為LRS電流太小的少數元件所致。以電流傳導機制分析劣化過程,認為劣化原因為LRS的阻絲太細,電極表面的氧離子在高溫下擴散將阻絲氧化切斷造成阻態改變。最後藉由提高成形過程(Forming)時的限流使LRS電流變大,再經過Retention測試後,劣化情形得到大幅改善。
Abstract
Supercritical fluid (SCF) has solubility as a solvent-carrying substance, and high penetration force can penetrate the materials to eliminate defects and perform film modification. The semiconductor industry generally uses SCF to clean wafers, but this laboratory has uniquely applied this technology to device processing. In this article, we used SCF technology to treat failed resistive switching random access memory (RRAM) devices at 120 degrees Celsius for one hour, and successfully repaired the defect in the device’s switching layer and became operational again. On the basis of the current conduction mechanism fitting results, we propose a model to explain the phenomenon.
According to papers and our laboratory’s researches, indium tin oxide (ITO) film used as the top electrode of the RRAM, the operating polarity is opposite to the platinum (Pt) top electrode of the RRAM, and the operating current and switching voltage are low, which means that the energy consumption is smaller. It is believed that ITO film has the opportunity to be practically used in commercial products. Therefore, supercritical fluid technology is also used to treat failed resistive switching ITO electrode RRAM to repair ITO oxygen vacancies, and the devices are also successfully restored. We hope to apply this low-temperature processing technology to batch processing in the future, and not just RRAM. Any electronic device can use this technology to improve or restore the performance of devices.
Novel memory has been a hot research topic for the past 10 years. Because of fast read/write speed, low power consumption, high endurance and long-term retention, RRAM has the opportunity to apply in automotive electronics. For automotive products, high temperature stability of RRAM is the most important thing. Therefore, one of the issues to be clarified is retention failure mechanism of RRAM. This article uses TSMC 1T1R devices. We use the electrical properties of a single device to simulate the entire array. At 200°C, 3 hours’ retention test, it was found that the high resistance state (HRS) current was hardly decayed, whereas the low resistance state (LRS) current was decayed. And the lower the current is, the easier it decays. The decayed current value is located in the minor distribution region and corresponds to a small number of devices in the 1T1R array where retention isn’t good because the LRS current is too low. Analyzing the failure process by the current conduction mechanism, it is thought that the cause of the retention failure is that the filament in the LRS is too fine. Oxygen ions on the surface of the electrode diffuse and oxidize the filament at the high temperature, which cause the resistance state change. Finally, by increasing the compliance current during the forming process, the LRS current is increased. After the retention test, the retention failure is greatly improved.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
第一章 序論 1
1.1 前言 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 記憶體簡介 2
2.2 次世代記憶體 2
2.2.1 相變化記憶體(PCRAM) 2
2.2.2 磁阻式記憶體(MRAM) 3
2.2.3 電阻式記憶體(RRAM) 4
2.2.4 RRAM 可靠度參數 5
2.3 絕緣層載子傳導機制 6
2.3.1 歐姆傳導(Ohmic Conduction) 6
2.3.2 蕭特基發射(Schottky Emission) 7
2.3.3 普爾-法蘭克發射(Poole-Frenkel Emission) 8
2.3.4 跳躍傳導(Hopping Conduction) 9
2.3.5 穿隧(Tunneling) 10
2.3.6 空間電荷限制電流(Space Charge Limited Current,SCLC) 11
2.4 超臨界流體簡介 11
第三章 實驗設備與原理 14
3.1 多靶磁控濺鍍系統 (Multi-Target Sputter) 14
3.2 N&K 薄膜特性分析儀 (N&K Analyzer) 14
3.3 X 光電子能譜 (X-ray Photoelectron Spectroscopy,XPS) 15
3.3 精密半導體參數量測分析儀 (Precision Semiconductor Parameter Analyzer) 15
3.4 超臨界流體反應系統 (Supercritical Fluid,SCF) 17
第四章 實驗結果與討論 18
4.1 超臨界流體修復Pt 上電極RRAM 元件 18
4.1.1 實驗動機 18
4.1.2 試片製作 18
4.1.3 元件基本特性 20
4.1.4 元件抹寫耐用度(Endurance) 21
4.1.5 元件資料耐久性(Retention) 22
4.1.6 元件Normally on 之電性 23
4.1.7 超臨界流體(SCF)氧化處理 24
4.1.8 SCF 氧化處理後元件之基本電性 24
4.1.9 SCF 氧化處理後之元件抹寫耐用度(Endurance) 26
4.1.10 SCF 氧化處理後之元件資料耐久性(Retention) 26
4.1.11 SCF 氧化處理前後之元件電性比較 27
4.1.12 模型建立 29
4.2 超臨界流體修復ITO 上電極RRAM 元件 34
4.2.1 實驗動機 34
4.2.2 試片製作 34
4.2.3 元件基本特性 35
4.2.4 元件抹寫耐用度(Endurance) 37
4.2.5 元件資料耐久性(Retention) 38
4.2.6 元件Normally on 之電性 39
4.2.7 超臨界二氧化碳超流體(SCF)氧化處理 39
4.2.8 SCF 氧化處理後元件之基本電性 40
4.2.9 SCF 氧化處理後之元件抹寫耐用度(Endurance) 41
4.2.10 SCF 氧化處理後之元件資料耐久性(Retention) 42
4.2.11 比較SCF 氧化處理前後之元件電性 43
4.2.12 模型建立 44
4.3 電阻式記憶體記憶力劣化機制 47
4.3.1 實驗動機 47
4.3.2 1T1R 基本電性 47
4.3.3 實驗假設條件 48
4.3.4 1T1R 資料耐久性(Retention) 52
4.3.5 1T1R Retention 劣化之電性機制分析 54
4.3.6 1T1R Retention 劣化模型建立 56
4.3.7 改善LRS 高溫Retention 59
4.3.8 Retention 改善之物理模型 64
第五章 結論 68
Reference 69
參考文獻 References
[1] K.-C. Chang et al., "Improvement mechanism of resistance random access memory with supercritical CO2 fluid treatment," The Journal of Supercritical Fluids, vol. 85, pp. 183-189, 2014.
[2] K. Natori, M. Ogura, K. Maeguchi, S. Taguchi, and H. Iwai, "A 64 kbit MOS dynamic random access memory," IEEE Journal of Solid-State Circuits, vol. 14, no. 2, pp. 482-485, 1979.
[3] S. Lee, C. Lee, D. Hou, R. Anderson, and D. Miller, "Static random access memory using high electron mobility transistors," IEEE electron device letters, vol. 5, no. 4, pp. 115-117, 1984.
[4] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, "Flash memory cells-an overview," Proceedings of the IEEE, vol. 85, no. 8, pp. 1248-1271, 1997.
[5] I. Hwang, Y.-J. Cho, M.-J. Lee, and M.-H. Jo, "The role of contact resistance in GeTe and Ge2Sb2Te5 nanowire phase change memory reset switching current," Applied Physics Letters, vol. 106, no. 19, p. 193106, 2015.
[6] A. Gyanathan and Y.-C. Yeo, "Two-bit multi-level phase change random access memory with a triple phase change material stack structure," Journal of Applied Physics, vol. 112, no. 10, 2012.
[7] D. Loke et al., "Breaking the speed limits of phase-change memory," Science, vol. 336, no. 6088, pp. 1566-1569, 2012.
[8] S. Yuasa and D. Djayaprawira, "Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO (0 0 1) barrier," Journal of Physics D: Applied Physics, vol. 40, no. 21, p. R337, 2007.
[9] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze, "Resistance random access memory," Materials Today, vol. 19, no. 5, pp. 254-264, 2016.
[10] H.-S. P. Wong et al., "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
[11] H. Akinaga and H. Shima, "Resistive Random Access Memory (ReRAM) Based on Metal Oxides," Proceedings of the IEEE, vol. 98, no. 12, pp. 2237-2251, 2010.
[12] Y. Wang et al., "Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications," Nanotechnology, vol. 21, no. 4, p. 045202, 2009.
[13] K.-C. Chang et al., "Physical and chemical mechanisms in oxide-based resistance random access memory," Nanoscale research letters, vol. 10, no. 1, p. 120, 2015.
[14] T.-J. Chu et al., "Charge Quantity Influence on Resistance Switching Characteristic During Forming Process," IEEE Electron Device Letters, vol. 34, no. 4, pp. 502-504, 2013.
[15] H. Sun et al., "Overcoming the Dilemma Between RESET Current and Data Retention of RRAM by Lateral Dissolution of Conducting Filament," IEEE Electron Device Letters, vol. 34, no. 7, pp. 873-875, 2013.
[16] T.-M. Tsai et al., "Bipolar Resistive RAM Characteristics Induced by Nickel Incorporated Into Silicon Oxide Dielectrics for IC Applications," IEEE Electron Device Letters, vol. 33, no. 12, pp. 1696-1698, 2012.
[17] M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, "Multilevel resistive switching with ionic and metallic filaments," Applied Physics Letters, vol. 94, no. 23, p. 233106, 2009.
[18] J. J. Yang et al., "The mechanism of electroforming of metal oxide memristive switches," Nanotechnology, vol. 20, no. 21, p. 215201, 2009.
[19] A. Sawa, "Resistive switching in transition metal oxides," Materials today, vol. 11, no. 6, pp. 28-36, 2008.
[20] S. M. Sze and K. K. Ng, Metal‐semiconductor contacts. Wiley Online Library, 2006.
[21] Ž. Knez, E. Markočič, M. Leitgeb, M. Primožič, M. K. Hrnčič, and M. Škerget, "Industrial applications of supercritical fluids: A review," Energy, vol. 77, pp. 235-243, 2014.
[22] M. Herrero, J. A. Mendiola, A. Cifuentes, and E. Ibáñez, "Supercritical fluid extraction: recent advances and applications," Journal of Chromatography A, vol. 1217, no. 16, pp. 2495-2511, 2010.
[23] X. Du et al., "Recovery of failed resistive switching random access memory devices by a low-temperature supercritical treatment," Applied Physics Express, vol. 10, no. 6, p. 064001, 2017.
[24] C.-Y. Lin et al., "Effects of varied negative stop voltages on current self-compliance in indium tin oxide resistance random access memory," IEEE Electron Device Letters, vol. 36, no. 6, pp. 564-566, 2015.
[25] C.-H. Pan et al., "Ultralow Power Resistance Random Access Memory Device and Oxygen Accumulation Mechanism in an Indium–Tin-Oxide Electrode," IEEE Transactions on Electron Devices, vol. 63, no. 12, pp. 4737-4743, 2016.
[26] C. Ye et al., "Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon," Applied Physics Express, vol. 7, no. 3, p. 034101, 2014.
[27] H. Lv et al., "Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory," Scientific reports, vol. 5, p. 7764, 2015.
[28] X. Huang et al., "HfO2/Al2O3 multilayer for RRAM arrays: a technique to improve tail-bit retention," Nanotechnology, vol. 27, no. 39, p. 395201, 2016.
[29] R. Liu, H. Wu, Y. Pang, H. Qian, and S. Yu, "Experimental characterization of physical unclonable function based on 1 kb resistive random access memory arrays," IEEE Electron Device Letters, vol. 36, no. 12, pp. 1380-1383, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code