Responsive image
博碩士論文 etd-0622101-054526 詳細資訊
Title page for etd-0622101-054526
論文名稱
Title
有機發光二極體電荷傳輸的研究
Study on the Charge Transport Organic Light Emitting Diode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-19
繳交日期
Date of Submission
2001-06-22
關鍵字
Keywords
蕭特基、歐姆、模型、電荷
Charge transport, TCL, SCLC
統計
Statistics
本論文已被瀏覽 5783 次,被下載 0
The thesis/dissertation has been browsed 5783 times, has been downloaded 0 times.
中文摘要
本論文提出了單層有機發光二極體的元件特性模型,此模型具有電荷注入、缺陷電荷限制、覆合、背景濃度摻雜效應的分析式計算。同時,本論文也報告了載子傳輸在有機材料與金屬之間是蕭特基接觸或歐姆接觸的原理結果及模擬研究。

在這理論裡,本模型驗證了在屬於歐姆接觸的摻雜的有機材料上,在低電壓時,電流是呈現歐姆性。假如在陰極上歐姆接觸被換作蕭特基接觸的話,電流將隨外加電壓成指數的變化。在高電壓時電流將呈現空間電荷限制電流。這轉換電壓的發生取決於摻雜濃度。在空間電荷限制電流區域裡電流的變化則是依據有名的電壓平方定律,但先決條件是在有機層內沒有缺陷濃度以及移動率與電場無關。

本論文所建立的模型是嘗試以最少的物理假設來突顯有機發光元件的特性。目的是在最簡單的模型上描述有機材料最單純的特性並能在實際應用中也能增加其複雜性。
Abstract
In this thesis, we propose the analytical calculations of single layer organic light emitting diode (OLED) characteristics using a device model which includes charge injection, trap charge limited, recombination, and the effect background dopping. Meanwhile, we report the results of a theoretical and simulated study of carrier transport between Schottky (ohmic) and organic contact in organic emitting diodes .

In this thesis, my model shows that in a doped organic material with ohmic contacts the current is ohmic at low voltage. If the ohmic contact at the cathode is replaced by an Schottky contact the current varies exponentially with the applied voltage V. The current changes to space charge limited current (SCLC) at high voltage. The voltage at which the change takes place depends on the dopant concentrations. In the SCLC regime the current varies according to well-known V2 law if there are no traps and the mobility is independent of the electric field.

In this model, we attempt to capture the salient features of organic LEDs with the minimal numberof physical assumptions. The aim is to describle intrinsic properties of the organic materical with the simplest model and add complexity as needed.
目次 Table of Contents
目 錄
目錄 iii
附表目錄 vii
附圖目錄 viii
第壹章 緒論…………………………………………….. 1
1-1 前言…………………………………………… 1
1-2有機與無機半導體的比較……………………. 3
1-3小分子與高分子結構的比較….………………. 4
1-4有機發光二極體在顯示器的應用…….………. 6
1-5發光理論與導電原理……………….…………. 7
1-5-1 電激發光之原理與電性理論….………… 7
1-5-2 高分子發光原理…………………………. 9
1-5-3 共軛導電高分子的導電理論與導電行為. 10
1-5-4 螢光理論…………………………………. 11
1-6 動機…………………………………………… 13
1-7 各章節結構…………………………………… 14
第貳章 文獻回顧………………………………………. 15
2-1 數值分析法…………………………………… 15
2-2 電荷傳輸理論分析…………………………… 24
2-2-1 空間電荷限制電流與缺陷電荷限制效應 24
2-2-2 雙層元件的傳輸層……………………… 28
2-2-3 關於穿透電流…………………………… 28
2-2-4 整流接觸………………………………… 30
2-2-5 .歐姆接觸…………………………………. 31
2 –4 討論…………………….…………………………………… 32
第參章 模型的建立與分析………………………… 33
3-1 完美結構……………………………………… 34
3-2 考慮背景濃度問題……………………….…... 36
3-3 考慮缺陷填滿限制問題……………………… 40
3-4 考慮接觸限制問題…………………………… 44
3-5 考慮復合問題………………………………… 46
3-6 結果與分析…………………………………… 48
第肆章 未來與展望………………………………………… 50
第伍章 結論……………………………………………... 52
附錄A …………………………………………………….. 55
參考文獻………………………………………………….. 97


附表目錄
表1-1(a) OLED 發展史………………………………… 56
表1-1(b) 有機發光二極體領域的主要發展歷史……… 57
表1-2 有機無機LED之比較……………………….. 57
表1-3 TFEL、LED、OLED之比較…..……………… 58
表1-4 小分子 OLED近況…………………………. 58
表1-5 聚合物PLED的近況…………………………. 59
表1-6 對於顯示器,室內照明,無機二極體技術的發光效率……………………………………. 59
表1-7 有機發光顯示器之優點……………………… 60

附圖目錄
圖1-1 絕緣體、半導體、導體材料的導電範圍……… 61
圖1-2 可撓曲性的PLED顯示器…………....………. 62
圖 1-3 OLED技術目前的市場..……………..……… 62
圖 1-4 旋轉鍍膜………………………..……………. 63
圖 1-5 金屬電極度膜…………….………………….. 63
圖 1-6(a) 單層有機發光二極體元件……………….….. 64
圖 1-6(b) 單層有機發光二極體元件…………………... 64
圖 1-7 載子傳輸過程………………………………… 65
圖 1-8 發光原理……………………………………… 65
圖 1-9 電子電洞再結合的能量分配表…………….... 66
圖 1-10(a) 激子…………………………………………... 67
圖 1-10(b) 激子…………………………………………... 67
圖 1-11 Polaron 與Bipolaron 的能階…………..…… 68
圖 1-12 共軛高分子的發光過程…………………….. 69
圖 1-13 吸收 、發光整個過程………………………. 70
圖 1-14 單層、雙層、三層有機發光元件…………… 71
圖 2-1 如何發光及激發狀態………………………… 72
圖 2-2 載子的產生與激發的行為(a)寬能隙(b)載能隙、兩個傳導帶(c)純質、摻雜n-type……… 72
圖 2-3 電場受庫倫力影響而造成能障下降………… 73
圖 2-4 受庫倫力影響下電場的分佈情形…………… 74
圖 2-5 電荷傳遞的方式 :1.藉著穿透電流注入電,2.電荷躍遷,3.覆合……………………………. 75
圖 2-6(a) 關於Space Charge的變化情形 ………………. 76
圖 2-6(b) 有摻雜下Space Charge的變化情形………… 77
圖 2-7 Space Charge 電位解析………………….…... 78
圖 2-8 雙層元件結構………………………………… 78
圖 2-9(a) 雙層元件載子傳輸情形…………….……….. 79
圖 2-9(b) 雙層元件載子傳輸情形……………………... 79
圖 2-9(c) 雙層元件載子傳輸情形……………………... 80
圖 2-9(d) 雙層元件載子傳輸情形………………….….. 80
圖 2-10 穿透電流………………….………………….. 81
圖 2-11 整流結構,平衡與偏壓時結構……………... 82
圖 2-12 歐姆接觸 ,平衡時與偏壓時時的結構……. 83
圖 2-13 考慮一邊歐姆接觸一邊蕭特基接觸的結…… 84
圖 2-14 注入接面的四種現象………………………… 85
圖 2-15(a) 本論文所提出的能帶圖,整個元件在外加偏壓下的表現…………………………………... 86
圖 2-15(b) 一般文獻所提出的能帶圖,整個元件在外加偏壓下的表現………………………………... 86
圖 3-1 隨著距離的減小(WJ),載子濃度也隨之遞減. 87
圖 3-2 隨著距離的變化,電場的變化情形….……... 87
圖 3-3 有機材料裡,不同背景濃度電流與電壓的特性曲線…..………………………………..…... 88
圖 3-4 Ca/PPV/Ca 結構,電流電壓的特性曲線…… 88
圖 3-5 單載子(ITO/PPV/Au)與雙載子(ITO/PPV/Ca注入的實驗值與計算電流電壓的特性曲線… 89
圖 3-6 利用無單位的方法模擬單層單載子的電流電壓特性曲線…………………………………... 90
圖 3-7 ITO/PPV/Ca結構,將各種模擬方法與實際值作比較……………………………………... 91
圖 3-8 Schottky/PPV/ITO結構,將各種模擬方法與實際值作比較………………………………... 92
圖 3-9 ITO/m-MTDATA/Ag結構,單載子傳輸的電流電壓特性曲線……...……………………… 93
圖 3-10 ITO/PPV/Au結構,電洞傳輸……………….. 94
圖 3-11 Ca/PPV/Ca結構,電子傳輸…………………. 94
圖 3-12 Ca/PPV/ITO結構,電子電洞一起傳輸…..… 95
圖 3-13 有機發光二極體的缺陷分佈圖……………… 96

參考文獻 References
[1-1] G. Natta, G. Mazzanti, and P. Corradini, Atti Accad. Naz. Lince Rend. Cl. Fis., Mat. Natur., 25(1958)3.

[1-2] (a) H. Shirakawa and S. Ikeda, Polym. J., 2(1971)231.
(b) T. Ito, H. Shirakawa, and S. Ikeda, J. Polym. Sci. Polym. ChemEd., 12(1974)11.

[1-3] (a) H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun., 578(1977).
(b) C. K. Chiang, C. R. Fincher, Y. W. Rark, A. J. Hegger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys.Rev.Lett., 39(1977)1098.

[1-4] 陳壽安, “有機電致發光顯示器發展現況與未來展望”, 光訊, 79期, pp.12-13,1999。

[1-5] 蔡元謙, 許千樹, “有機發光材料在顯示元件上的應用” ,光訊, 66期, pp.13-15, 1997。

[1-6] 王文俊, “主動式有機發光二極體顯示器 TFT-LCD 未來的競爭對手”, 電子月刊, 第11期, pp.102-107, 2000.

[1-7] M. G. Kanatzidls, ”Conductive Polymer”, Chem. Eng. News, Dec. 3(1990)36.

[1-8] W. R. Salaneck, Cotem. Phys., 30(1989)403.

[1-9] 蘇炎坤, 莊賦祥, “有機發光材料”, 中國材料科學學會。

[2-1] G. Parthasarathy, C. Shen, A. Kahn, and S. R. Forrest, “Lithium doping of Semiconductor Organic Charge Transport Materials”, J. Appl. Phys, 89(2001)4986.

[2-2] N. von Malm, J. Steiger, R. Schmechel, and H. von Seggem, “Trap Engineering in Organic Hole Transport Materials”, J. Appl. Phys, 89(2001)5559

[2-3] N. C. Greenham and R. H. Friend, “Semiconductor Device Physics of Conjugate Polymers”, Solid State Phys, 49 (1995)1.

[2-4] D. V. Khramtchenkov, V. I. Arkhipov, and H. Bassler, “Charge Carrier Recombination in Organic Bilayer Electroluminescent Diodes I. Theory”, J. Appl. Phys, 81 (1997) 6954.

[2-5] Y. H. Tak and H. Bassler, “Charge Carrier Recombination in Organic Bilayer Electroluminescent Diodes I. Theory”, J. Appl. Phys, 81 (1997)6963.

[2-6] E. M. Conwell and M. W. Wu, “Contact Injection into Polymer Light-Emitting Diodes”, Appl. Phys. Let, 70 (1997)1867.

[2-7] P. W. M. Blom, M. J. M. deJong, and S. Breedijk, “Temperture Dependent Electron-Hole Recombination in Polymer Light-Emitting Diodes“, Appl. Phys. Lett, 71 (1997) 930.

[2-8] D. Parker, “Carrier Tunneling and Device Characteristics Sin Polymer Light-Emitting Diodes“, J. Appl. Phys, 75 (1994)1656.

[2-9] H. campbell, T. W. Hagler, and D. L. Smith, “Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metal/Polymer/Metal Structures“, Phys. Rev. Lett, 76 (1996)1900.

[2-10] Yu. N. Garnstein and E. M. Conwell, “Field-Dependent Thermal Injection into Disordered Molecular Insulator”, Chem. Phys. Lett, 255 (1996)93.

[2-11] I. H. Campbell, P. S. Davids, D. L. Smith. N. N. Barashkov, and J. P. Ferraris., “The Schottky Energy Barrier Dependence of Charge Injection in Organic Light-Emitting Diodes”, Appl. Phys. Lett, 72 (1998) 1863.

[2-12] M. Abkowitz, J. S. Facci, and M. Stolka., “Time-Resolved Space Charge-Limited Injection in a Trap-Free Glassy Polymer”, Chem. Phys, 177 (1993) 783.

[2-13] M. A. Lampert and P. Mark, Current Injection in Solids, (Academic, New York, 1970).

[2-14] J. Staudigl, M.StoBel, F.steuber, J.Simmerer, “A Quantitative Numerical Model of Multilayer Vapor-Deposited Organic Light Emitting Diodes” J. Appl. Phys, 86 (1999)3895.

[2-15] E. Tutis, M.N.Bussac, B.Masenelli, M.Carrard, L.Zuppiroli, “Numerical Model for Organic Light-emitting Diodes”, J. Appl. Phys, 89 (2001)430.

[2-16] J. Shen and J. Yang, “Physical Mechanisms in Double-Carrier Trap-Charge Limited Transport Processess in Organic Electroluminescent Devices: a Numerical Study”, J. Appl. Phys, 83(1998)7706.

[2-17] J. Yang and J.Shen , “Doping Effect in organic Electroluminescent Devices”, J. Appl. Phy., 84 (1998)2105.

[2-18] P. S. Davids, I. H. Campbell, and D. L. Smith, “Device Model for Single Carrier Organic Diode”, J. Appl. Phys, 82 (1997)6319.

[2-19] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith., “Device Model Investigation of Single Layer Organic Light Emitting Diode”, J. Appl. Phys, 84 (1998)833.

[2-20] E. Tutis, M.-N. Bussac, and L. Zuppiroli, “Image Force Effect at Contact in Organic Light-Emitting Diodes”, Applied Physics Lett, 75 (1999)3880.

[2-21] R. N. Marks, F. Biscarini, T. Virgili, M. Muccini, R. Zamboni, and C. Taliani, Philos. Trans. R. Soc. London, Ser. A, 355 (1997)763.

[2-22] Yu. N. Garnstein and E. M. Conwell, “Field-Dependent Thermal Injection into Disordered Molecular Insulator”, Chem. Phys. Lett, 255 (1996)93.

[2-23] M. N. Bussac, D. Michoud, and L. Zuppioroli,” Electrode Injection into Conjugated Polymers”, Phy. Rev. Lett, 81 (1988)1678.

[2-24] P. S. Davids, A. Saxena, and D. L. Smith,”Bipolaron Lattice Formation at Metal-Polymer Interfaces”, Phys. Rev, B53(1996)4823.

[2-25] M. N. Bussac, D. Michoud, E. Tutis, and L. Zuppiroli, Proc. SPIE, 3476(1998)156.
[2-26] R. H. Friend et al. Nature(London), 397(1997)121.

[2-27] E. Tutis, M. N. Bussac, B. Masenellin, M. Carrard, and L. Zuppiroli, ”Numerical Model for Organic Light-Emitting Diode”, J. Appl. Phys, 89 (2001)430.

[2-28] I. D. Paker, ”Carrier Turning and Device Characteristics in Polymer Light-Emitting Diodes”, J. Appl. Phys, 75 (1994)1656.

[2-29] A. J. Heerger, I. D. Parker, & Y. Yang, “Carrier Injection into Semiconducting Polymers: Fowler-Nordheim Field-Emission Tunneling”, Synth. Met, 67 (1994)23.

[2-30] R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A, 119 (1928) 173.

[2-32] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bassler, “Charge Injection into Light-Emitting Diodes: Theory and Experiment”, J. Appl. Phys, 84 (1998)848.

[2-33] A. Rose, “Space-Charge-Limited Current in SOLID”, Phys. Rev, 97 (1955)1538.

[2-34] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, M. E. Thompson, “Relationship between Electroluminscence and Current Transport in Organic Heterojunction Light-Emitting Devices”, J. Appl. Phys, 79 (1996)1538.

[2-35] M. A. Lamper, “A Simplified Therory of Two-Carrier, Space-Charge-Limited Current Flow in Solids”, RcA, 20 (1959)682.

[2-36] R.W Smith, and A. Rose, “Space-Charge-Limited Currents in Single Crystals of Cadmium Sulfide”, Phys. Rev, 97 (1955)1531.

[2-37] G. T. Wright, “Mechanisms of Space-Charge-Limited Current in Solid”, Solid-state Electronics, 2 (1960)165.

[2-38] H. Bassler, “Injection, Transport and Recombination of Charge Carriers in Organic Light-Emitting Diodes”, Polymers for Advanced Technologies, 9 (1998)402.

[3-1] B. K. Crone, P. S. Davids, I.H. Campbell, and D. L. Smith, “Device model investigation of Single Layer Organic Light Emitting Diodes”, J. Appl. Phys, 15 (1998)833.
[3-2] I. D. Parker, “Carrier turning and Devices Characteristics in Polymer Light-Emitting Diodes”, J.Appl.Phys, 75 (1994)1656.
[3-3] A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, “Space-Charge Limited Conduction with Traps in Poly(phenylene vinylene) Light Emitting Diodes”, J. Appl. Phys, 82 (1997)6326.
[3-3] S. Karg, M. Meier, and W. Riess, “Light-Emitting Diodes Based on Poly-p-phenylene-vinylene :I. Charge Carriers Injection and Transport”, J. App. Phys, 82 (1997)1951.
[3-4] A. J. Campbell, M. S. Weaver, D, G, Lidzey, and D. D Bradely, “Bulk Limited Conduction in Electroluminscence Polymer Devices”, J. Appl. Phys, 84 (1998)6737.
[3-5] S. V. Rakhmanova and E. M. Conwell, “Electric-Field Dependence of Mobility in Congated Polymer Films”, Appl. Phys. Lett, 76(2000) 3822.
[3-6] M. A. Lampert and P. Mark, Current Injection inSolids (Academic, New York, 1970)
[3-7] P. W. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, “Electron and Hole Transport in Poly(p-phenylene vinylene) Devices”, Applied Physics Letters, 68 (1996)3308.
[3-8] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, M. E. Thompson, “Relationship between Electroluminscence and Current Transport in Organic Heterojunction Light-Emitting Devices”, J. Appl. Phys, 79 (1996)1538.
[3-9] P. Langevin, Ann. Chem. Phys, 28 (1903)289
[3-10] C. D. J. Blades, B. Alison. Walker, “Simulation of Organic Light-Emitting Diodes”, Synthetic Metals, 111-112 (2000)335.
[3-12] J. Staudigel, M. Stobel, F. Steuber, J. Simmerer, “A Quantitative Numerical Model of Multilayer Vapor-Deposited Organic Light Emitting Diodes”, J. Appl. Phys, 86 (1999)3895.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.234.154.197
論文開放下載的時間是 校外不公開

Your IP address is 18.234.154.197
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code