Responsive image
博碩士論文 etd-0622105-130114 詳細資訊
Title page for etd-0622105-130114
論文名稱
Title
干涉式濺鍍法成長之氮化鋁(AlN)薄膜
Deposition of AlN Thin Films by Coherent Magnetron Sputtering
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-03
繳交日期
Date of Submission
2005-06-22
關鍵字
Keywords
微結構、表面型態、干涉式磁子濺鍍、氮化鋁
Aluminum nitride, microstructure, morphology, coherent sputtering
統計
Statistics
本論文已被瀏覽 5702 次,被下載 3460
The thesis/dissertation has been browsed 5702 times, has been downloaded 3460 times.
中文摘要
以同構反應式磁控濺鍍系統在溫度低於80ºC下在加有負偏壓的矽基板及玻璃基板上成長氧化鋁薄膜。靶材-基板距離17公分。對不同基板偏壓成長之氮化鋁薄膜微結構及表面形態進行研究。當基板所加的偏壓為零伏特時所生成的氮化鋁薄膜為非晶系薄膜。而當基板所加的偏壓介於負180伏特和負210伏特時所生成的氮化鋁薄膜具有所要的(002)晶格排向。在偏壓為負210伏特時有最大的結晶顆粒,量得的顆粒直徑是80奈米。基板所加的偏壓介於負240伏特和負270伏特時所生成的薄膜可觀察到晶格排向除了(002)之外還包含了(100)。而基板偏壓加至負320伏特時(002)晶格排向消失了。此外,長的靶材-基板距離所生成的薄膜可觀察到鏡面反射。在偏壓為負210伏特時最大的表面粗糙度是47.2 ±5.0 奈米。
對磁控濺鍍系統成長之氮化鋁薄膜硬度及微結構於室溫進行研究。研究發現氮化鋁薄膜硬度及微結構與負偏壓的變化具有高度的相關性。而當基板所加的偏壓負210伏特時,多晶氮化鋁薄膜最大的硬度是17.5 GPa。在相同偏壓條件下,水滴接觸角大於90度,顯示此氮化鋁薄膜表面具有疏水性。此外,還探討分別以氮化鋁靶與鋁靶在400℃反應式磁控濺鍍所成長之具有(002)晶格排向氮化鋁薄膜之硬度,且也與長距離磁控濺鍍系統成長之氮化鋁薄膜硬度做比較與探討。
Abstract
Polycrystalline AlN thin films were reactively deposited onto Al layers on negatively biased glass and Si substrates at temperatures < 80 oC by coherent magnetron sputtering. The target-to-substrate distance is 17 cm. The microstructures and morphology of the films grown at different bias voltages on the substrates were investigated. Typical thickness of the deposited film is 600 nm. The films were amorphous when no bias was applied to the substrates. Diffraction peak of AlN (002) direction was observed at bias voltages of -180 and -210 V. At a bias voltage of -210 V, the (002) granular crystal with the maximum diameter of 80 nm was obtained. In addition to the AlN (002) direction, AlN (100) direction was observed when the bias voltage was increased to -240 and -270 V. The peak of (002) plane vanished at a bias voltage of -320 V. Moreover, the deposited AlN films have specular reflectance owning to the large target-to-substrate distance. The maximum roughness of the films was 47.2±5.0 nm at a bias voltage of -210 V.
The hardness and microstructure of aluminum nitride (AlN) thin films prepared by long-distance magnetron sputtering at room temperature has been investigated. The hardness and microstructure of the films were found to vary greatly with different substrate biases. At a bias voltage of –210 V, the (002) polycrystalline AlN with the maximum hardness of 17.5 GPa was observed. The water droplet contact angle under this bias condition is larger than 90° indicating that hydrophobicity can be obtained at the film surface. In addition, hardness of (002) AlN films prepared by sputtering of AlN target at room temperature and by reactive sputtering of Al target at 400°C were discussed and compared with that of AlN films prepared by long-distance reactive sputtering.
目次 Table of Contents
Chapter 1 Introduction……………………………………………………1
1-1 Introduction……………………………………………..1
1-2 Dissertation overview…………………………………2
1-3References…………………………………………………5
Chapter 2 The Coherent Magnetron Sputtering System….7
2-1 Introduction………………………………………………7
2-2 Deposition methods……………………………………..…8
2-3 Conclusions…………………………………………….…22
2-4 References………………………………………………...37

Chapter 3 AlN Growth and Characterizations……………39
3-1 Introduction………………………………………………39
3-2 Experiment…………………………………………………40
3-3 Results and discussions………………………………42
3-4 Fabrication of the SAW devices………………………44
3-5 Conclusions…………………………………………………45
3-6 References…………………………………………………56

Chapter 4 Mechanical Properties of AlN Thin Films……58
4-1 Introduction………………………………………….……58
4-2 Experiment……………………………………………..……59
4-3 Results and discussions………………………….…….60
4-4 Conclusions………………………………………….64
4-5 References……………………………………………...71

Chapter 5 Conclusions…………………………………………………..73
參考文獻 References
1-3 References
1. E. Ruiz, S. Alvarez and P. Alemany, Physical Review B., 49 (1993) 7115.
2. B. Wang, Y. N. Zhao and Z. He, Vacuum, vol. 48, NO. 5, (1997) 427-429.
3. A. A. Ivanko, in G. V. Samsonov (ed.), Handbook of hardness data, Keter Press, Jerusalem, 1971.
4. N. Azema, R. Durand, C. Dupuy and L. Cot, J. Euro. Ceram. Soc., 8 (1991) 291.
5. K. Hatwar and T. R. Pian, Mater. Res. Soc. Symp. Proc., 121 (1988) 557.
6. A. D. Katnani and K. I. Papathomas, J. Vac. Sci. Technol. A, 5 (1987) 1335.
7. A. Bellosi, E. Landi and A. Tampieri, J. Mater. Res., 8 (1993) 565.
8. J. M. E. Harper, J. J. Cuomo and H. T. Hentzell, Appl. Phys. Lett., 43 (1983) 547.
9. T. R. Sliker and D. A. Roberts, J. Appl. Phys., vol. 38, pp. 2350-2358, Apr. 1967.
10. H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, App. Phys. Lett., v. 64, no. 2, pp. 166 (1994).
11. K. M. Lakin, G. R. Kline and K. T. McCarron, IEEE Trans. On Microwave Theory and Techniques 43, 2933 (1995).
12. A. F. Belyanin, L. L. Bouilov, V. V. Zhirnov, A. I. Kamenev, and K. A. Kovalskij, Diamond and Related Materials, 8 (1999) 369-372.
13. S. Muhl, J. A. Zapien, J. M. Mendez, and E Andrade, J. Phys.
14. L. M. Sheppard, Am. Ceram. Soc. Bull., 69 (1990) 1801.
15. H. C. Lee and J. Y. Lee, J. Mater. Sci.: Materials in Electronics, 8, 385 (1997).
16. M. Pinza, M. F. De Riccardis, L. Mirenghi, M. A. Tagliente and E. Verona, Thin Solid Films, 259, 154 (1995).
17. T. Shiosaki, T Yamamoto, T. Oda and A. Kawabata, Appl. Phys. Lett., 36, (8), 643 (1980).
18. S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda and A. Itoh, J. Vac. Sci. Tech., 16 (1979) 990.
19. A. H. Khan, M. F. Odeh, J. M. Meese, E. M. Charlson, E. J. Charlson, T. Stacy, G. Povovici, M. A. Prelas and J. L. Wragg, J. Mater. Sci., 29 (1994) 4314.
20. X. D. Wang, W. Jiang, M. G. Norton and K. W. Hipps, Thin Solid Films, 251 (1994) 121.
21. J. Yang, C. Wang, X. Yan, K. Tao and Y. Fan, J. Phys. D: Appl. Phys., 27 (1994) 1056.
22. M. Ishihara, H. Yumoto, T. Tsuchiya and K. Akashi, Thin Solid Films, 281 (1996) 321.
2-4 References
1. R. Glang and L. I. Maisse., Handbook of Thin Film Technology, Eds., McGraw-Hill, New York, (1970), chap. 1.
2. R. A. Levy, Microelectronic Materials and Processes, ASI, Boston, (1989), chap. 4.
3. F. L. Schuermeyer, W. R. Chase, and E. L. King, J. Appl. Phys., 42 (1971) 5856.
4. J. I.Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum, New York, (1981) 77.
5. G. K. Wehner, G. S. Anderson, L. I. Maissel and R. Glang, Handbook of Thin Film Technology, Eds., McGraw-Hill, New York, (1970), Chap. 3.
6. Rossngel SM. Sputter Deposition. In: Sproul WD, Legg KO, editors. Opportunities for Innovation: Advanced Surface Engineering. Switzerland: Technomic Publishing Co., (1995).
7. Behrisch R, editor. Sputtering by particle bombardment. In: Applied Physics, Berlin: Springer, 47 (1981).
8. Townsend PD, Kelly JC, Hartley New. Ion Implantation, Sputtering and their Applications. London: Academic Press, (1976).
9. A. J. Stirling and W. D. Westwood, J. Appl. Phys., 41 (1970) 742.
10. L. T. Ball, I. S. Falconer, D. R. Mckenzie, and J. M. Smelt, J. Appl. Phys., 59 (1986) 720.
11. J. W. Coburn and E. Kay, Appl. Phys. Lett., 18 (1971) 435.
12. J. W. Coburn and E. Kay, J. Appl. Phys., 43 (1972) 4965.
13. Hitchman M. L., Jensen KF, editors. CVD principles and applications. San Diego: Academic Press; (1993).
14. Morosanu C. E., Thin films by chemical vapor deposition. Amsterdam: Elsevier; (1990).
15. Blocher J. M., J. Vac. Sci. Technol., 11 (1974) 680.
16. Bryant W. A., J. Electrochem. Soc., 125 (1978) 1534.
17. Lili V. C., In: Handbook of thin film process technology. Bristol (UK): Institute of Physics, B1 (1995) 12.
18. Hocking M. G., Vasantasree V, Sidky P. S., Metallic and ceramic coatings: production, high temperature properties and applications. Longman: Essex (UK) and John Wiley & Sons: New York; (1989).
19. J. K. Roberts and A. R. Miller, Heat and Thermodynamics, London, (1951) 274.
20. S. Schiller, V. Heisig, and K. Goedicke, Vak. – Tech., 27 (1977) 51.
21. Choy K. L., Progress in Materials Science, 48 (2003) 57.
22. D. W. Pashley, Phys., 14 (1965) 327.
23. J. A. Venables, Proc. 9th Int. Vac. Cong. and 5th Int. Conf. Solid Surf., Asoc. Espanola de Vacio (A SEVA), Madrid, (1983) 26.
24. B. A. Movchan and A. V. Demchishin, Phys. Met. Metallogr., 28 (1969) 83.
25. J. A. Thornton, J. Vac. Sci. & Technol., 11 (1974) 666.
26. W. D. Westwood, N. Waterhouse, and P. S. Wilcox, Tantalum Thin Films, Academic Press, London, (1975) 60.
27. P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, and F. B. Alexander, J. Appl. Phys., 44 (1973) 2545.
28. A. K. Sinha, T. E. Smith, T. T. Sheng, and N. N. Axelrod, J. Vac. Sci. & Technol., 10 (1973) 436.
29. G. Este and W. D. Westwood, J. Vac. Sci. & Technol., A5 (1987) 1892.
30. M. Hatzakis, B. J. Canavello, and J. M. Shaw, IBM J. Res. & Dev., 24 (1980) 452.
31. D. B. Fraser, VLSI Technology, S. M. Sze, Ed., McGraw-Hill, New York, (1983) Chap. 9.
3-6 References
1. R. B. Stokes and J. D. Crawford, IEEE Trans. on Microwave Theory Technol., 41 (1993) 1075.
2. K. M. Lakin, G. R. Kline, and K. T. McCarron, IEEE Trans. on Microwave Theory Technol., 41 (1993) 2139.
3. R. S. Naik, J. J. Lutsky, R. Reif, and C. G. Sodini, IEEE Trans. on Ultrason., Ferroelectric. and Freq. Contr., 45 (1998) 257.
4. H. C. Lee and J. Y. Lee, J. Mater. Sci.: Materials in Electronics, 8 (1997) 385.
5. M. Pinza, M. F. De Riccardis, L. Mirenghi, M. A. Tagliente and E. Verona, Thin Solid Films, 259 (1995) 154.
6. T. Shiosaki, T Yamamoto, T. Oda and A. Kawabata, Appl. Phys. Lett., 36 (1980) 643.
7. S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda and A. Itoh, J. Vac. Sci. Tech., 16 (1979) 990.
8. A. H. Khan, M. F. Odeh, J. M. Meese, E. M. Charlson, E. J. Charlson, T. Stacy, G. Povovici, M. A. Prelas and J. L. Wragg, J. Mater. Sci., 29 (1994) 4314.
9. X. D. Wang, W. Jiang, M. G. Norton and K. W. Hipps, Thin Solid Films, 251 (1994) 121.
10. J. Yang, C. Wang, X. Yan, K. Tao and Y. Fan, J. Phys. D: Appl. Phys., 27 (1994) 1056.
11. M. Ishihara, H. Yumoto, T. Tsuchiya and K. Akashi, Thin Solid Films, 281 (1996) 321.
12. E. Ruiz, S. Alvarez and P. Alemany, Physical Review B., 49 (1993) 7115.
13. K. Miernik, J. Walkowicz and J. Smolik, Surf. Coat. Technol., 98, (1998) 1298.
14. G. M. Turner, S. M. Rossnagel and J. J. Cuomo, J. Vac. Sci. Technol., 11 (1993) 2796.
15. H. C. Lee, J. Y. Lee and H. J. Ahn, Thin Solid Films, 251 (1994) 136.
16. M. Ishihara, S. J. Li, H. Yumoto, K. Akashi and Y. Ide, Thin Solid Films, 316 (1998) 152.
17. H. C. Lee, J. Y. Lee and H. J. Ahn, Thin Solid Films, 251 (1994) 136.
18. B. Wang, Y. N. Zhao and Z. He, Vacuum, 48 (1997) 427.
19. R. H. Tancrell and M. G. Holland, Acoustic surface wave filters, Proc. IEEE, 59 (1971) 393.
20. K. M. Lakin, D. W. Mih, and R. M. Tarr, A new interdigital electrode transducer geometry, IEEE Trans. MTI-22, (1974) 763.
21. G. L. Matthaei and D.Y. Wong, Some technology for interdigital acoustic surface wave filter synthesis, Proc. 1973 IEEE Ultrasonics Symposium, New York, (1973) 427.
22. C. K. Campbell, IEEE transactions on Ultrasonics, Ferroelectrics and Frequency Control, 42 (1995) 883.
23. Y. Kobayashi, N. Tanaka, H. Okano and K. Takeuchi, Japanse Journal of Applied Physics, 34 (1995) 2668.
1. R. B. Stokes and J. D. Crawford, IEEE Trans. on Microwave Theory and Techniques, 41 (1993) 1075.
2. L. G. Pearce, R. L. Gunshor and R. F. Pierret, Appl. Phys. Lett., 39 (1981) 878.
3. M. Gadenne, J. Poln and P. Gadenne, Thin Solid Films, 333 (1998) 251.
4. K. Miernik, J. Walkowicz, and J. Smolik, Surface and Coatings Tech., 98 (1998) 1298.
5. S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda and A. Itoh, J. Vac. Sci. Tech., 16 (1979) 990.
6. A. H. Khan, M. F. Odeh, J. M. Meese, E. M. Charlson, E. J. Charlson, T. Stacy, G. Povovici, M. A. Prelas and J. L. Wragg, J. Mater. Sci., 29 (1994) 4314.
7. X. D. Wang, W. Jiang, M. G. Norton and K. W. Hipps, Thin Solid Films, 251 (1994) 121.
8. M. Ishihara, H. Yumoto, T. Tsuchiya and K. Akashi, Thin Solid Films, 281 (1996) 321.
9. H. C. Lee and J. Y. Lee, J. Mater. Sci.: Materials in Electronics, 8 (1997) 385.
10. A. K. Chu, C.H. Chao, F.Z. Lee and H. L. Huang, J. Electron. Material, 30 (2001) 1.
11. M. Pinza, M. F. De Riccardis, L. Mirenghi, M. A. Tagliente and E. Verona, Thin Solid Films, 259 (1995) 154.
12. H. C. Lee, J. Y. Lee and H. J. Ahn, Thin Solid Films, 251 (1994) 136.
13. P. Patsalas, C. Charitidis and S. Logothetidis, Surface and Coatings Tech., 125 (2000) 335.
14. H. C. Lee, K. Y. Lee, Y. J. Yong, J. Y. Lee and G. H. Kim, Thin Solid Films, 271 (1995) 50.
15. K. Miernik, J. Walkowicz, and J. Smolik, Surface and Coatings Tech., 98 (1998) 1298.
16. T. Nishide, S. Honda, M. Matsuura and M. Ide, Thin Solid Films, 371 (2000) 61.
17. Y. Taga and T. Ohwaki, J. Surf. Finish. Jpn., 47 (1996) 15.
18. P. Patsalas, C. Charitidis and S. Logothetidis, Surface and Coatings Tech., 125 (2000) 335.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code