Responsive image
博碩士論文 etd-0622105-170302 詳細資訊
Title page for etd-0622105-170302
論文名稱
Title
耦合XY模型探討液晶相變化
The study of phase transition of liquid crystal in a coupled XY model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
157
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-10
繳交日期
Date of Submission
2005-06-22
關鍵字
Keywords
相變化、蒙地卡羅模擬方法、耦合XY模型、層列型液晶、有限尺度分析
coupled XY model, phase transition, Smectic phase, Monte Carlo simulation
統計
Statistics
本論文已被瀏覽 5688 次,被下載 1692
The thesis/dissertation has been browsed 5688 times, has been downloaded 1692 times.
中文摘要
摘 要
本論文研究q階耦合XY模型,並應用於探討液晶系統的相變化問題。Bruinsma與Aeppli對液晶Sm-A →Hex-B相變提出Hexatic與Herringbone兩種有序的耦合模型,我們一般化成q階耦合XY模型,以蒙地卡羅模擬方法對這個模型進行研究。對於二維q階耦合XY模型在三角晶格上模擬的結果發現,系統會出現q - state clock相變及XY相變。當交互作用係數在某些範圍時,會產生XY相變與q-state clock相變重合而變成一個新型態的相變。這個耦合的全新相變與一些液晶相變的臨界現象吻合,例如三階耦合XY模型衍生three-state Potts相變,當three-state Potts相變與XY相變結合可以模擬二維無襯液晶薄膜Sm-A →Hex-B相變,系統中耦合鍵向有序與鯡魚骨有序的相變,比熱臨界指數α≒0.3,模擬的結果能解釋二維無襯液晶薄膜Sm-A →Hex-B相變。另一方面關於耦合順磁有序與反磁有序的系統,我們模擬三階反磁耦合XY模型,我們發現系統會衍生反磁three-state Potts相變,當反磁three-state Potts相變與XY相變重合後是一階相變,這個相變與實驗量測出不具鲱魚骨相變的Sm-A →Hex-B相變有許多的相同點。
Abstract
Abstract

In this study, we employed the Monte Carlo simulation method to investigate the q-state coupled XY model based on the Landau free energy of couple hexatic order and herringbone order proposed by Bruinsma and Aeppli. On two-dimensional triangular lattices simulation results reveal that the q-state coupled XY model will generate a q-state clock phase transition and a XY transition. The unique generated q-state clock phase transition and XY transition will couple in some coupling parameter domain. The novel coupled transitions behavior agree with the phase transition of some kinds of liquid crystal. For example, the three-state Potts phase transition generated by a 3-state coupled XY model and the Sm-A →Hex-B transition of free – standing two layers liquid crystal are matched. Their heat capacity anomaly is similar and the heat capacity exponent is both closed to α≒0.3.
We also investigated the system of coupled ferromagnetic order and antiferromagnetic order. Adapted the positive coupling parameter on the Hamiltonian of 3-state coupled XY model, the simulation results reveal that the system generate an antiferromagnetic three-state Potts transition. In some parameter domain the antiferromagnetic three-state Potts transition and XY transition are coupled, and become a novel transition. The novel transition may explain the Sm-A →Hex-B transition of some kinds of liquid crystal which lack herringbone order.
目次 Table of Contents
目錄
第一章 緒論 -------------------------------------------------------- 1
第二章 液晶SmA → HexB相變
2-1 : 液晶簡介 ------------------------------------------------- 5
2-2 : 液晶SmA → HexB相變之比熱異象 --------------- 9
2-2-1 : 二維熔化理論 ------------------------------------- 9
2-2-2 : 觀察六角相的實驗 ------------------------------ 12
2-2-3 : SmA → HexB 相變之比熱異象---------------- 13
第三章 XY模型
3-1 : KT相變 ---------------------------------------------------19
3-2 : 漩渦與漩渦對 ------------------------------------------20
3-3 : 二維XY模型 ------------------------------------------21
3-4 : 鍵向有序與XY模型 ----------------------------------27
第四章 耦合XY模型
4-1 : BA模型
4-1-1 : BA模型的建立 ----------------------------------- 31
4-1-2 : BA模型的分析 ----------------------------------- 33
4-1-3 : BA模型的修正 ----------------------------------- 36
4-2 : 耦合XY模型之總能函數 --------------------------- 39
第五章 蒙地卡羅模擬方法
5-1 : 蒙地卡羅理論 ------------------------------------------ 41
5–2 : 注意事項
5-2-1 : 新自旋的產生 ----------------------------------- 46
5-2-2 : 平均能量 ----------------------------------------- 46
5-2-3 : 熱力學物理量的計算 -------------------------- 47
5-3 : 臨界行為
5-3-1 : 臨界指數 ----------------------------------------- 49
5-3-2 : 普適律與尺度 ----------------------------------- 50
5-3-3 : 有限尺度分析 ----------------------------------- 51
5-3-4 : 相變階數的判斷 -------------------------------- 53
第六章 結果與討論
6-1 : Three-state Potts-like相變
6-1-1 : 緒論 ----------------------------------------------- 56
6-1-2 : 結果與分析 -------------------------------------- 57
6-1-3 : 結論 ----------------------------------------------- 62
6-2 : Six-state clock 相變
6-2-1 : 緒論 ----------------------------------------------- 75
6-2-2 : 結果與分析 -------------------------------------- 76
6-2-3 : 結論 ----------------------------------------------- 80
6-3 : q-state clock 相變
6-3-1 : 緒論 ----------------------------------------------- 97
6-3-2 : 結果與分析 -------------------------------------- 98
6-3-3 : 結論 ----------------------------------------------- 99
6-4 : Antiferromagnetic three-state Potts相變
6-4-1 : 緒論 ---------------------------------------------- 114
6-4-2 : 結果與分析 ------------------------------------- 115
6-4-3 : 結論 ---------------------------------------------- 119
6-5: 向列型液晶中非線性光學的研究
6-5-1 : 緒論---------------------------------------------- 138
6-5-2 : 實驗方法---------------------------------------- 138
6-5-3 : 結果與分析--------------------------------------- 140
第七章 總結 ----------------------------------------------------- 142
參考文獻 --------------------------------------------------------- 144
參考文獻 References
參考文獻;
1. L. Onsager, Phys. Rev. 65, 117 (1944).
2. C. N. Yang, Phys. Rev. 85, 809 (1952).
3. L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974).
4. N. D. Mermin and H. Wagner. Phys. Rev. Lett. 17, 1133 (1966).
5. N. D. Mermin, J. Math. Phys. Rev. 8 ,1061 (1967).
6. N. D. Mermin Phys. Rev. 176, 250 (1968).
7. P. C. Hohenberg, Phys. Rev, 158, 383(1967).
8. V. L. Brezinskii, Zh. Eksp. Tev. Fiz. 59, 907 (1970).
9. J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181(1973).
10. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
11. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
12. A. P. Young, Phys. Rev. B19, 1855(1979).
13. K. J. Strandlurg, Rev. Mod. Phys. 60 (1988) 161.
14. C. C. Huarg, J. M. Viner, R. Pindak and J. W. Goodby, Phys.Rev. Lett. 46, 1289 (1981).
15. C. C. Huang, R. Pindak and G. Srajer, (1990).
16. T. Pitchford, G. Nounesis, S. Dumrong rattana, J. M. Viner and C. C. Huang, Phys. Rev. A32, 1938 (1985).
17. R. Geer, T. Stoebe, C. C. Huang, R. Pindak, G. Srajer, J. W. Goodby, M. Chang, J. T. Ho and S.W. Hui, Phys. Rev. Lett. 66, 1322(1991).
18. T. Stoebe et al., Phys. Rev. Lett. 68, 2944(1922).
19. R. Brulinsma, Nature 431, 486 (1989).
20. R. Bruinsma, and G. Aeppli, Phys. Rev. Lett. 48, 1625(1982).
21. J. M. Jiang etal. Phys. Rev. E 48, R3240, (1993).
22. J. M. Jiang, T. Stobe and C. C. Huang, Phys. Rev. Lett, 76, 2910 (1996).
23. I. M. Jiang, and C. C. Huang, Phsica A, 221, 104(1995)
24. C. Y. Young, R. Pindak, N. A. Clark and R. B. Meyer, Phys. Rev. Lett. 40, 773 (1978).
25. R. Pindak, D. E. Moncton, S. C. Davey and J. W. Goodby, Phys. Rev. Lett. 46, 1135(1981).
26. K. G. Wilson and J. Kogut, Phys. Report 12, 75 (1974).
27. A. N. Berker and D. R. Nelson, Phys. Rev. B19, 2488 (1979).
28. S. A. Solla, and E. K. Riedel, 1981, Phys. Rev. B23, 6008 (1981).
29. F. F. Abraham, Phys. Rev. Lett. 44, 463 (1980).
30. F. F. Abraham, Phys. Rep. 80, 339 (1981).
31. Y. Saito, Phys. Rev. Lett. 48, 1114 (1982).
32. M. J. Nelson etal. Phys. Rev. B35, 1419 (1987).
33. N. G. A. Geiser etal. Phys. Rev. Lett. 59, 1625 (1987).
34. A. J. R. Widom etal. Phys. Rev. Lett. 43, 1340 (1979).
35. C. A. Murray and D. H. van Winkle, Phys. Rev. Lett. 58 1200 (1987).
36. Y. Tang etal. Phys. Rev. Lett. 62, 2401(1989).
37. C. A. Murrary etal. Phys. Rev.Lett. B42, 688 (1990).
38. I. M. Jiang, C. Y. Wang, M. S. Tsai, J. M. M. M., 232,181(2001)
39. I. M. Jiang et al. Appl. Phys. Lett., 84, 245(2004)
40. I. M. Jiang et al. J. Appl. Phys., 96, 860 (2004)
41. C. C. Huang and T. Stoebe, Adv. Phys. 42, 343 (1993).
42. T. Stoebe and C. C. Huang, Int. J. Mod. Phys.B9 2285 (1995).
43. J. C. Leguillon and J. Zinn-Justin, J. Physique Lett. 46 L- 137 (1985).
44. R. T. Geer, T. Stoebe, Piechford and C. C. Huang, Rev. Sci. Instrum. 62, 415 (1991).
45. Doucet, J. Phys. (Paris), Lett. 40, L185 (1979).
46. A. M. Levelut, J. Phys. (Paris), colloq. 37, C351 (1976).
47. A. B. Harris and A. J. Berlinsky, Can. J. Phys. 57, 1852 (1979).
48. F. Y. Wu, Rev. Mod. Phys 54, 235 (1982)
49. L. P. Kadanoff, and F. J. Wegner, Phys. Rev. A 10,435 (1974)
50. G. Nounesis, etal. Phys. Rev. A40, 5468 (1989).
51. M. Kohandel, M. J. P. Gingras and J. P. Kemp, Phys. Rev. E. 68, 041701 (2003).
52. M. J. P. Gingras, P. C. W. Hold sworth, and B. bergersen,
Europhys. Lett. 9, 539 (1989)
53. M. J. P. Gingras, P. C. W. Hold sworth, and B. bergersen,
Phys. Rev. A41, 3377 (1990)
54. M. J. P. Gingras, P. C. W. Hold sworth, and B. bergersen,
Phys. Rev. A41, 6786 (1990)
55. M. J. P. Gingras, P. C. W. Hold sworth, and B. bergersen,
Mod. Cryst. Lig. Cryst. 204, 177 (1991)
55. K. Binder and D. W. Heermann, Springer Series in Solid-stato Sciences 80
56. D. E. Knudh Seminumerical Algorithms, 2nd ed.
57. Stanley, H. E. An Introduction tu Phase Transition and Critical Phenomena, Oxford University Press.
58. M. E. Fisher, Rev, Mod. Phys. 46, 597 (1974).
59. J. Yeomans, Statistical Mechanics of Phase Transition, Oxford University Press Oxford. Z. Phys. B 43 119(1981).
60, K. Binder, Z. Phys. B43, 119(1981)
61. D. A. Olson, X. F. Han, A. Cady, and C. C. Huang, Phys. Rev. E66, 021702 (2002)
62. J. V. Jose, L. P. Kadanoff, S.Kirkpatrick and D. R. Nelson, Phys. Rev. B16, 1217 (1977).
63. J. Tobochnik, Phys Rev. B 26, 6201(1982).
64. M. S. S. Challa, and D. P. Landau, Phys. Rev. B 33, 437 (1986).
65. Sumiyoshi Fujiki, and Tsuyoshi Horiguchi, J. Phys. Soc. Japan 64 (1995) 1293.
66. M. S. Shan, I-M Jiang, C. Y. Huang, and C. C. Shih, Opt. lett.28, 2357(2003)
67. M. S. Shan, C. T. Kau, S. Y. Huang, C. C. Shih, and I-M Jiang, Appl. Phys. Lett., 85, 855(2004)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code