Responsive image
博碩士論文 etd-0622109-103048 詳細資訊
Title page for etd-0622109-103048
論文名稱
Title
阿茲海默氏症腦脊髓液生化標記蛋白的分析及tau蛋白 被肝醣合成酶激酶3β過度磷酸化分子機轉的研究
Cerebrospinal fluid biomarkers and molecular mechanism of tau’s hyperphosphorylation by glycogen synthase kinase 3β in Alzheimer’s disease
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2009-06-22
關鍵字
Keywords
tau蛋白、磷酸化、阿茲海默氏症、腦脊髓液、肝醣合成酶激酶3β
Alzheimer's disease, tau protein, glycogen synthase kinase 3β, phosphorylation, cerebrospinal fluid
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
阿茲海默氏症(Alzheimer's Disease,AD)是一種神經退化性疾病。臨床症狀的特徵是大腦認知功能逐漸的衰退,而病理上的特徵則是大腦神經細胞內出現神經纖維糾結(neurofibrillary tangle,NFT)及神經細胞外堆積的老年斑塊(senile plaque, SP)。其中NFT的主要成分是一種與細胞內微管相連結但被過度磷酸化的Tau蛋白質,而SP主要是由貝它類澱粉(Aβ)堆積而成,其中大部分是Aβ1-42胜肽(Aβ42)。由於臨床上需要更好的工具來輔助AD早期及精確診斷,預測AD疾病的進展,及監測AD治療藥物的療效,因此腦脊髓液(CSF)生化標記蛋白的運用發展,便成為快速成長的研究領域。本研究計劃,我們總共納入28位AD病人,16位非AD(non-AD)的失智症病人,14位其他神經科疾病(OND)的病人,及21位智能正常者(HC)成為研究對象。我們的結果顯示AD病人相較於非失智症的控制組,腦脊髓液的tau蛋白有明顯上升而Aβ42則明顯下降。而AD及非AD二組失智病人,CSF tau蛋白及Aβ42的量則沒有明顯的差異。這些結果建議CSF的tau蛋白及Aβ42二者都是很好的生化標記蛋白可幫助區別AD及非失智症,但卻無法有效鑑別AD及non-AD二組失智症病人。進一步分析CSF生化標記蛋白與臨床症狀相關性,我們結果發現,只有CSF tau蛋白而非Aβ42,與AD病人的短期記憶測驗分數呈現有意義的負相關(spearman: r= -0.444; p=0.018)這些結果顯示AD病人中,較高的CSF tau蛋白會合併有較多的NFT病灶及較嚴重的短期記憶力障礙。在研究tau蛋白被肝醣合成酶激酶3β(GSK3β)過度磷酸化的分子機轉方面,我們的結果顯示Thr231位置是GSK3β原始磷酸化tau蛋白的位置,而且tau胜肽,tau227-237 (AVVRTPPKSPS)包含了T231P232 motif被辨識為GSK3β的結合處而且結合係數(kd)高達0.82±0.16μM。我們的結果發現GSK3β直接結合並磷酸化T231P232 motif後,導致tau蛋白結構的改變,並進而使N端tau失去了抑制C端tau蛋白被磷酸化的能力,最後導致C端tau蛋白被GSK3β順序性磷酸化。再者,實驗結果顯示tau蛋白被過度磷酸化後會減弱它促進微小管聚合的能力並導致N18細胞膜周圍無法形成微管束(bundle),而T231A的突變細胞內,tau可以完全不被GSK3β磷酸化而保有它促進微小管聚合能力並形成微管束。總之,我們的結果顯示GSK3β在T231位置的磷酸化對於tau蛋白的過度磷酸化及功能調控扮演重要角色。
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions and the presence of intracellular neurofibrillary tangles (NFT) and extraneuronal senile plaques (SP). The major component of NFT is the hyperphosphorylated microtubules-associated protein tau. SP is consistent of extracellular deposition of β-amyloid (Aβ), mainly Aβ1-42 peptide (Aβ42). Given the need of tools for early and accurate diagnosis and prediction of disease progression and monitoring the efficacy of therapeutic agents for AD, development of cerebrospinal fluid (CSF) biomarkers have become a rapidly growing research field. In our study, patients with AD (n=28), non-AD dementia (n=16), other neurological disorder (OND, n=14) and healthy controls (HC, n=21) were included. Our results revealed that AD patients have significant higher CSF total tau (t-tau) and lower Aβ42 levels than HC and OND groups. There is no significant difference of both CSF t-tau and Aβ42 levels between AD and non-AD dementia groups. These results suggest that both CSF t-tau and Aβ42 are good biomarkers for distinguishing AD from non-dementia control subjects but demonstrate less discriminating power in differentiating AD from non-AD dementia. Moreover, our results show only CSF t-tau level but not Aβ42 has an inverse correlation with the score of short-term memory patients with AD (spearman: r = -0.444; p=0.018). These data indicate the higher CSF t-tau level is associated with much NFT pathology and more severe impairment of short-term memory in AD patients. In the study of the moleacular mechanism of tau’s hyperphosphorylation by glycogen synthase kinase 3b (GSK3b), we show that the T231 is the primary phosphorylation site for GSK3b and the tau227-237 (AVVRTPPKSPS) derived from tau containing T231P232 motif is identified as the GSK3b binding site with high affinity of a Kd value 0.82 ± 0.16 mM. Our results suggest that direct binding and phosphorylation of T231P232 motif by GSK3b induces conformational change of tau and consequentially alters the inhibitory activity of its N-terminus that allows the sequential phosphorylation of C-terminus of tau by GSK3b. Furthermore, hyperphosphorylation reduces tau’s ability to promote tubulin assembly and to form bundles in N18 cells. T231A mutant completely abolishes tau phosphorylation by GSK3b and retains the ability to promote tubulin polymerization and bundle formation. Taken together, these results suggest that phosphorylation of T231 by GSK3b may play an important role in tau’s hyperphosphorylation and functional regulation.
目次 Table of Contents
Contents
Chapter 1. General introduction………………………………………...……1
1.1 Alzheimer’s disease…………………………………………………..2
1.2 Cerebrospinal fluid biomarkers and Alzheimer’s disease……………3
1.3 Tau protein and Alzheimer’s disease…………………………………4
Chapter 2. Analysis of cerebrospinal fluid biomarkers in Alzheimer’s disease………………………………………………………………..8
2.1 Introduction…………………………………………………………….9
2.2 Meterials and methods………………………………….…………..…13
2.3 Results……………………………………………….………………..18
2.4 Discussion…………………………………………….……….………23
Chapter 3. Molecular mechanism of tau’s hyperphosphorylation by
glycogen synthase kinase 3β……………………………..……….36
3.1 Introduction…………………………………………….….….………37
3.2 Experimental procedures…………………….……………….……….40
3.3 Results………………………………………….……………………..46
3.4 Discussion………………………………………….…………………56
Chapter 4. Conclusions and future perspective…………….….……………76
References……………………………………………………….…………….79
Figures contents

Figure 2.1 Scattergraphs and measures of CSF levels of t-tau and Aβ42 in
demented patients and controls subjects…………………………30
Figure 2.2 Receiver operating characteristic curve analysis of CSF t-tau and
Aβ42 level………………………………………………………31
Figure 2.3 Western blot assays of total tau protein from CSF samples of four groups…………………………………………………………….32
Figure 3.1 Preparation charactarization and cleavage of Tau and Tau’s
mutants…………………………………………………………...65
Figure 3.2 Phosphorylation of T231 induced the conformation change is critical for Tau hyperphosphorylation….………………………….……..67
Figure 3.3 Priming phosphorylation at S235 is not an absolutely required event for T231 prephosphorylation……….……………………………...68
Figure 3.4 Biochemical characterization of the interaction between GSK3
參考文獻 References
References
Abraha A., Ghoshal N., Gamblin T. C., Cryns V., Berry R. W., Kuret J., and Binder L. I. (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease. J. Cell. Sci. 113, 3737-3745.
Alonso Adel C, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K. (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279, 34873-34881.
American Psychiatric Association, 1994. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, fourth ed., American Psychiatric Association, Washington, DC.
Andreasen, N., Minthon, L., Clarberg, A., Davidsson, P., Gottfries, J., Vanmechelen, E., Vanderstichele, H., Winblad, B., Blennow, K., 1999. Sensitivity, specificity, and stability of CSF-tau in AD in a community-base patients sample. Neurology 57, 1488-1494.
Andreasen, N., Minthon, L., Davidsson, P., Vanmechelen, E., Vanderstichele H., Winblad, B., Blennow, K., 2001.Evaluation of CSF-tau and CSF- Aβ42 as diagnostic markers for Alzheimer's disease in clinical practice. Arch. Neurol. 58, 373–379.
Andreasen, N., Blennow, K., 2005. CSF biomarkers for mild cognitive impairment and early Alzheimer's disease. Clin. Neurol. Neurosurg. 107, 165–173.
Avila J., Lim F., Moreno F., Belmonte C., and Cuello A. C. (2002) Tau function and dysfunction in neurons: its role in neurodegenerative disorders. Mol. Neurobiol. 25, 213-231.
Avila J. (2006) Tau protein, the main component of paired helical filaments. J. Alzheimers Dis. 9, 171-175.
Bain J, McLauchlan H, Elliott M, Cohen P. (2003) The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199-204.
Blennow, K., Vanmechelen, E., 2003. CSF markers for pathogenic processes in Alzheimer's disease: diagnostic implications and use in clinical neurochemistry. Brain Res. Bull. 61, 235–242.
Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., Landfield P.W., 2004. Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA. 101, 2173-2178.
Buee L., Bussiere T., Buee-Scherrer V., Delacourte A., and Hof P. R. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33, 95-130.
Buerger K., Zinkowski, R., Teipel, S.J., Tapiola, T., Arai, H., Blennow, K., Andreasen, N., Hofmann-Kiefer, K., DeBernardis, J., Kerkman, D., McCulloch, C., Kohnken, R., Padberg, F., Pirttilä, T., Schapiro, M.B., Rapoport, S.I., Möller, H.J., Davies, P., Hampel, H., 2002. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at Threonine 231. Arch. Neurol. 59, 1267-1272.
Cho J. H., and Johnson G. V. (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J. Neurochem. 88, 349-358.
Clark, C.M., Xie, S., Chittams, J., Ewbank, D., Peskind, E., Galasko, D., Morris, J.C., McKeel, D.W. Jr., Farlow, M., Weitlauf, S.L., Quinn, J., Kaye, J., Knopman, D., Arai, H., Doody, R.S., DeCarli, C., Leight, S., Lee, V.M., Trojanowski, J.Q., 2003. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed diagnoses? Arch. Neurol. 60, 1696–1702.
Cleveland D. W., Hwo S. Y., and Kirschner M. W. (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol. 116, 227-247.
Cohen P, Frame S. (2001) The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769-776.
Csernansky, J.G. , Miller, J.P., McKeel, D., Morris, J.C., 2002. Relationships among cerebrospinal fluid biomarkers in dementia of the Alzheimer type. Alzheimer Dis. Assoc. Disord. 16, 144–149.
Daly N. L., Hoffmann R., Otvos L. Jr., and Craik D. J. (2000) Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer's disease. Biochemistry 39, 9039-9046.
Doble B. W., and Woodgett J. R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175-1186.
Dominguez I., and Green J. B. (2001) Missing links in GSK3 regulation. Dev. Biol. 235, 303-313.
Dubois, B., Feldman, H., Jacova, C., DeKosky, S., Barberger-Gateau, P., Cummings, J., Delacourte, A ., Galasko, D., Gauthier, S., Jicha, G.., 2007. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6, 734 – 746.
Engelborghs, S., Maertens, K., Vloeberghs, E., Aerts, T., Somers, N., Marien, P., De Deyn, P.P., 2006. Neuropsychological and behavioural correlates of CSF biomarkers in dementia. Neurochem. Int. 48, 286-295.
Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J. (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Curr. Alzheimer. Res. 2, 3-18.
Flaherty D. B., Soria J. P., Tomasiewicz H. G., and Wood J. G. (2000) Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J. Neurosci. Res. 62, 463-472.
Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”. A practical method f or grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.
Frame S, Cohen P, Biondi RM. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327.
Franz, G., Beer, R., Kampfl, A., Engelhardt, K., Schmutzhard, E., Ulmer, H., Deisenhammer, F., 2003. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60, 1457-1461.
Galasko, D., Chang, L., Motter, R., Clark C.M., Kaye, J., Knopman, D., Thomas, R., Kholodenko, D., Schenk, D., Lieberburg, I., Miller, B., Green, R., Basherad, R., Kertiles, L., Boss M.A., Seubert, P., 1998. High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer's disease and relation to apolipoprotein E genotype. Arch. Neurol. 55, 937–945.
Ganzer, S., Arlt, S., Schoder, V., Buhmann, C., Mandelkow, E.M., Finckh, U., Beisiegel, U., Naber, D., Muller-Thomsen, T., 2003. CSF-tau, CSF-Abeta1-42, ApoE-genotype and clinical parameters in the diagnosis of Alzheimer's disease: combination of CSF-tau and MMSE yields highest sensitivity and specificity. J. Neural. Trans. 110, 1149–1160.
Gong C. X., Liu F., Grundke-Iqbal I., and Iqbal K. (2005) Post-translational modifications of tau protein in Alzheimer's disease. J. Neural. Transm. 112, 813-838.
Gong C.X., Lidsky T., Wegiel J., Zuck L., Grundke-Iqbal I., and Iqbal K. (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J. Biol. Chem. 275, 5535-5544.
Goedert M, Spillantini MG. (2006) A century of Alzheimer's disease. Science. 314, 777-781.
Gordon-Krajcer W., Yang L., and Ksiezak-Reding H. (2000) Conformation of paired helical filaments blocks dephosphorylation of epitopes shared with fetal tau except Ser199/202 and Ser202/Thr205. Brain Res. 856, 163-175.
Gomez-Tortosa, E., Gonzalo, I., Fanjul, S., Sainz, M.J., Cantarero, S., Cemillan, C., Yebenes, J.G., del Ser, T., 2003. Cerebrospinal fluid markers in dementia with Lewy bodies compared with Alzheimer’s disease. Arch. Neurol. 60, 1218-1222.
Graves, A.B., Larson, E.B., Edland S.D., Bowen, J.D., McCormick, W.C., McCurry, S.M., Rice, M.M., Wenzlow, A., Uomoto, J.M., 1996. Prevalence of dementia and its subtypes in the Japanese American population of King Country, Washington state. The Kame Project. Am. J. Epidemiol. 144, 760-771.
Grossman, M., Farmer, J., Leight, S., Work, M., Moore, P., Van Deerlin, V., Pratico, D., Clark, C.M., Coslett, H.B., Chatterjee, A., Gee, J., Trojanowski, J.Q., Lee, V.M.Y, 2005. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease, Ann. Neurol. 57, 721–729
Guillozet, A.L., Weintraub, S., Mash, D.C., Mesulam, M.M., 2003. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol. 60, 729-736.
Guillozet-Bongaarts A. L., Garcia-Sierra F., Reynolds M. R., Horowitz P. M., Fu Y., Wang T., Cahill M. E., Bigio E. H., Berry R. W., and Binder L. I. (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease. Neurobiol. Aging 26, 1015-1022.
Hampel, H., Buerger, K., Kohnken, R., Teipel, S.J., Zinkowski, R., Moeller, H.J., Rapoport, S., Davies, P., 2001. Tracking of Alzheimer's disease progression with CSF tau protein phosphorylated at threonine 231. Ann. Neurol. 49, 545–546.
Hampel, H., Buerger, K., Zinkowski, R., Teipel, S.J., Goemitz, A., Andreasen, N., Sjoegren, M., DeBernardis, J., Kerkman, D., Ishiguro, K., Ohno, H., Vanmechelen, E., Vanderstichele, H., McCulloch, C.H., Moller, J., Davies, P., Blennow, K., 2004. Measurements of phosphorylated tau epitopes in the differential diagnosis of Alzheimer's disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry 61, 95–102.
Hampel, H., Bürger, K., Pruessner, JC., Zinkowski, R., DeBernardis J, Kerkman D., Leisinger G., Evans A.C., Davies P., Moller H.J., Teipel S.J., 2005. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer’s disease. Arch. Neurol. 62, 770-773.
Hesse, C., Rosengren, L., Andreasen, N., Davidsson, P., Vanderstichele H., Vanmechelen, E.,
Blennow, K., 2001. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett. 297, 187-190.Hirokawa N., Shiomura Y., and Okabe S. (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J. Cell. Biol. 107, 1449-1459.
Hoffmann R, Lee VM, Leight S, Varga I, Otvos L Jr. (1997) Unique Alzheimer's disease paired helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry 36, 8114-8124.
Hong M., Chen D. C., Klein P. S., and Lee V. M. (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J. Biol. Chem. 272, 25326-25332.
Hoshi M., Takashima A., Noguchi K., Murayama M., Sato M., Kondo S., Saitoh Y., Ishiguro K., Hoshino T., and Imahori K. (1996) Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl. Acad. Sci. U. S. A. 93, 2719-2723.
Hu, Y.Y., He, S.S., Wang, X., Duan, Q.H., Grundke-Iqbal, I., Iqbal, K., Wang, J., 2002. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme –linked immunosorbent assay. Am. J. Pathol. 2160, 1269-1278.
Hulstaert, F., Blennow, K., Ivanoiu, A., Schoonderwaldt, H.C., Riemenschneider, M., De Deyn, P.P., Bancher, C., Cras, P., Wiltfang, J., Mehta, P.D., Iqbal, K., Pottel, H, Vanmechelen, E., Vanderstichele, H., 1999. Improved discrimination of AD patients using β-amyloid1–42 and tau levels in CSF. Neurology 52, 1555–1562.
Hyman, B.T., 1997. The neuropathological diagnosis of Alzheimer’s disease: linical-pathological studies. Neurobiol. Aging 18 (4 suppl), S27-S32.
Iqbal, K., Flory, M., Khatoon, S., Soininen, H., Pirttila, T., Lehtovirta, M., Alafusoff, I., Blennow, K., Andreasen, N., Vanmechelen, E., Grundke-Iqbal, I., 2005. Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers. Ann. Neurol. 58, 748-757.
Ishiguro K., Shiratsuchi A., Sato S., Omori A., Arioka M., Kobayashi S., Uchida T., and Imahori, K. (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 325, 167-172.
Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M. K., Trojanowski J.Q., and Lee V. M. (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751-762.
Ishizawa T., Sahara N., Ishiguro K., Kersh J., McGowan E., Lewis J., Hutton M., Dickson D. W., and Yen S. H. (2003) Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am. J. Pathol. 163, 1057-1067.
Ivanoiu, A., Sindic, C., 2005. Cerebrospinal fluid TAU protein and amyloid beta42 in mild cognitive impairment: prediction of progression to Alzheimer's disease and correlation with the neuropsychological examination. Neurocase 11, 32–39.
Jensen, M., Schroder, J., Blomberg, M., Engvall, B., Pantel, J., Ida, N., Basum, H., Wahlund, L.O., Werle, E., Jauss, M., Beyreuther, K., Lannfelt, L., Hartmann, T., 1999. Cerebrospinal fluid Aβ42 is increased early in sporadic Alzheimer's disease and declines with disease progression. Ann. Neurol. 45, 504–511.
Jicha G. A., Bowser R., Kazam I. G., and Davies P. (1997a) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J. Neurosci. Res. 48, 128-132.
Jicha G. A., Lane E, Vincent I, Otvos L Jr, Hoffmann R, Davies P. (1997b) A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J. Neurochem. 69, 2087-2095.
Kanemaru, K., Kameda, N., Yamanouchi, H., 2000. Decreased CSF amyloid beta42 and normal tau levels in dementia with Lewy bodies. Neurology 54, 1875-1876.
Kapaki, E., Paraskevas, G.P., Zalonis, I., Zournas, C., 2003. CSF tau protein and β-amyloid (1-42) in Alzheimer’s disease diagnosis: discrimination from normal ageing and other dementias in Greek population. Eur. J. Neurol. 10, 119-128.
Knopman, D.S., Dekosky, S.T., Cummings, J.L., Chui, H., Corey-Bloom, J.,Relkin, N., Small, G.W., Miller, B., Stevens, J.C., 2001. Practice parameter: Diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56,1143-1153.
Kretzshmar, H.A., Ironside, J.W., DeArmond, S.J., Tateishi, J., 1996. Diagnostic criteria for sporadic Creutzfeldt-Jacob disease. Arch. Neurol.53, 913-920.
Lewczuk, P., Esselmann, H., Otto, M., Maler, J.M., Henkel, A.W., Henkel, M.K., Eikenberg, O., Antz, C., Krause, W-R, Reulbach, U., Kornhuber, J., Wiltfang, J., 2004. Neurochemical diagnosis of Alzheimer’s dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging 25, 273 – 281.
Lichtenberg B., Mandelkow E. M., Hagestedt T., and Mandelkow E. (1988) Structure and elasticity of microtubule-associated protein tau. Nature 334, 359-362.
Lin K.N., Wang, P.N., Liu, C.Y., Chen, W.T., Lee, Y.C., Liu, H.C., 2002. Cutoff scores of the Cognitive Abilities Screening Instrument, Chinese version in screening dementia. Demen. Geriatr. Cogn. Disord. 14, 176-182.
Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett. 530, 209-214.
Liu, H.C., Fuh, J.L., Wang, S.J., Liu, Y.C., Larson, E.B., Lin, K.N., Wang, H.C., Chou, P., Wu, Z.A., Lin, C.H., Wang, P.N., Teng, E.L., 1998. Prevalence of subtypes of dementia in a rural Chinese population. Alzheimer Dis. Assoc. Disord. 12, 127-134.
Liu, H.C., Teng, E.L., Lin, K.N., Chuang, Y.Y., Wang, P.N., Fuh, J.L., Liu, C.Y., 2002. Performance on the Cognitive Abilities Screening Instrument at different stages of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 13, 244-248.
Liou Y. C., Sun A., Ryo A., Zhou X. Z., Yu Z. X., Huang H. K., Uchida T., Bronson R., Bing G., Li X. et al. (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556-561.
Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubis, B., Duvoisin, R.C., Goetz, C.G., Golbe, L.I., Grafman, J., Growdon, J.H., Hallett, M., Jankovic, J., Quinn, N.P., Tolosa, E., Zee, D.S., 1996. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP International Workshop. Neurology 47, 1-9.
Lovestone S., Hartley C. L., Pearce J., and Anderton B. H. (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73, 1145-1157.
Lu P. J., Wulf G., Zhou X. Z., Davies P., and Lu K. P. (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784-788.
Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R., and Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20, 27-39.
Maddalena, A. Papassotiropoulos, A., Muller-Tillmanns, B., Jung, H.H., Hegi, T., Nitsch, R.M., Hock, C., 2003. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to β-amyloid peptide42. Arch. Neurol. 60, 1202–1206.
McKeith, I.G., Galasko, D., Kosoka, K., Perry, E.K., Dickson, D.W., Hansen, L.A., Salmon, D.P., Lowe, J., Mirra, S.S., Byrne, E.J., Lennox, G., Quinn, N.P., Edwardson, J.A., Ince, P.G., Bergeron, C., Burns, A., Miller, B.L., Lovestone, S. , Collerton, D., Jansen, E.N., Ballard, C., de Vos, R.A., Wilcock, G.K., Jellinger, K.A., Perry, R.H., 1996. Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies. Neurology 47, 1113–1116.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 34, 939–944.
Mehta, P.D., Pirtilla, T., Patrick, B.A., Barshatzky, M., Mehta, S.P., 2001. Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett. 304, 102–106.
Mercken M., Grynspan F., and Nixon R. A. (1995) Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau. FEBS Lett. 368, 10-14.
Mitani, K., Furiya, Y., Uchihara, T., Ishii, K., Yamanouchi, H., Mizusawa, H., Mori, H., 1998. Increased CSF tau protein in corticobasal degeneration. J. Neurol. 245, 44-46.
Mitchell, T.W., Mufson, E.J., Schneider, J. A., Cochran, E.J., Nissanov, J., Han, L.Y., Bienias, J.L., Lee, V.M., Trojanowski, J.Q., Bennett, D. A., Arnold, S.E., 2002. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann. Neurol. 51, 182-189.
Molina, L., Touchon, J., Herpe, M., Lefranc D., Duplan, L., Cristol, J.P., Sabatier, R., Vermersch, P., Pau, B., Mourton-Gilles, C., 1999. Tau and apoE in CSF: potential aid for discriminating Alzheimer’s disease from other dementias. Neuroreport 10, 3491-3495.
Muyllaert D, Terwel D, Borghgraef P, Devijver H, Dewachter I, Van Leuven F. (2006) Transgenic mouse models for Alzheimer's disease: the role of GSK-3B in combined amyloid and tau-pathology. Rev Neurol (Paris). 162, 903-907.
Nagga, K., Gottfries, J., Blennow, K., Marcusson, J., 2002. Cerebrospinal fluid phosphor-tau, total tau and β-amyloid 1-42 in the differentiation between Alzheimer’s disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 14, 183-190.
Neary, D., Snowden, J.S., Gustafson, L., Passant, U. , Stuss, D., Black, S., Freedman, M., Kertesz, A., Robert, P.H., Albert, M., Boone, K., Miller, B.L., Cummings, J., Benson, D.F., 1998. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554.
Planel E., Yasutake K., Fujita S. C., and Ishiguro K. (2001) Inhibition of protein phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J. Biol. Chem. 276, 34298-34306.
Raux, G., Guyant-Marechal, L., Martin, C., Bou, J., Penet, C., Brice, A., Hannequin, D., Frebourg, T., Campion, D., 2005. Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update. J. Med. Genet. 42, 793–795.
Reynolds C. H., Betts J. C., Blackstock W. P., Nebreda A. R., and Anderton B. H. (2000) Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J. Neurochem. 74, 1587-1595.
Riemenschneider, M., Lautenschlager, N., Wagenpfeil, S., Diehl, J., Drzezga, A., Kurz, A., 2002. Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch. Neurol. 59, 1729–1734.
Reimenschneider, M., Wagenpfeil, S., Diehl, J., Lautenschlager, N., Wiltfang, J., Kretzchmar, H., vanmechelen, E., Forstl, H., Kurz, A., 2003. Tau and Aβ42 protein in CSF of patients with frontotemporal degeneration. Neurology 58, 1622-1628.
Román, G.C., Tatemichi, T.K., Erkinjuntti, T., Cummings, J.L., Masdeu, J.C., Garcia, J.H., Amaducci, L., Orgogozo, J.M., Brun, A., Hofman, A., Moody, D.M., O’Brien, D., Yamaguchi, T., Grafman, J. , Drayer, B.P., Bennett, D.A., Fisher, M., Ogata, J. , Kokmen, E., Bermejo, F., Wolf, P.A., Gorelick, P.B., Bick, K.L., Pajeau, A.K., Bell, M.A., DeCarli, C. , Culebras, A., Korczyn, A.D., Bogousslavsky, J., Hartmann., A., Scheinberg, P., 1993. Vascular dementia; diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43, 250–260.
Schönknecht, P., Pantel, J., Hunt, A., Volkmann, M., Buerger, K., Hampel, H., Schröder, J., 2003. Levels of total tau and tau protein phosphorylated at threonine 181 in patients with incipient and manifest Alzheimer's disease. Neurosci. Lett. 339, 172–174.
Schweers O., Schonbrunn-Hanebeck E., Marx A., and Mandelkow E. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269, 24290-24297.
Selkoe D. J. (1999) Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23-31.
Sengupta A., Kabat J., Novak M., Wu Q., Grundke-Iqbal I., and Iqbal K. (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys. 357, 299-309.
Sherrington, R., Froelich, S., Sorbi, S., Campion, D., Chi, H., Rogaeva, E. A., Levesque, G., Rogaev, E. I., Lin, C., Liang, Y., Ikeda, M., Mar, L., Brice, A., Agid, Y., Percy, M. E., Clerget-Darpoux, F., Piacentini, S., Marcon, G., Nacmias, B., Amaducci, L., Frebourg, T., Lannfelt, L., Rommens, J. M., St George-Hyslop, P. H., 1996. Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum. Mol. Genet. 5, 985–988.
Shoji, M., Kanai, M., Matsubara, E., Ikeda, M., Hariagaya, Y., Okamoto, K., Hirai, S., 2000. Taps to Alzheimer's patients: a continuous Japanese study of cerebrospinal fluid markers. Ann. Neurol. 48, 402.
Singer D, Lehmann J, Hanisch K, Hartig W, Hoffmann R. (2006) Neighbored phosphorylation sites as PHF-tau specific markers in Alzheimer's disease. Biochem. Biophys. Res. Commun. 346, 819-828.
Sjogren, M., Minthon, L., Davidsson, P., Granerus, A.K., Clarberg, A., Vanderstichele, H., Vanmechelen, E., Wallin, A., Blennow, K., 2000. CSF levels of tau, beta-amyloid (1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J. Neural. Transm. 107, 563-579.
Skrabana R, Skrabanova-Khuebachova M, Kontsek P, Novak M. (2006) Alzheimer's disease associated conformation of intrinsically disordered tau protein studied by intrinsically disordered protein liquid-phase competitive enzyme-linked immunosorbent assay. Anal. Biochem. 359, 230-237.
Sobow, T., Flirski, M., Liberski, P.P., 2004. Amyloid-beta and tau proteins as biochemical markers of Alzheimer’s disease. Acta Neurobiol. Exp. 64, 53-70.
Stefanova, E., Blennow, K., Almkvist, O., Hellström-Lindahl, E., Nordberg, A., 2003. Cerebral glucose metabolism, cerebrospinal fluid-β-amyloid1-42 (CSF-Aβ42), tau and apoliporpotein E genotype in long-term rivastigmine and tacrine treated Alzheimer disease (AD) patients. Neurosci. Lett. 338, 159–163.
Spittaels K., Van den Haute C., Van Dorpe J., Geerts H., Mercken M., Bruynseels K., Lasrado R., Vandezande K., Laenen I., Boon T. et al. (2000) Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J. Biol. Chem. 275, 41340-41349.
Sunderland, T., Linker, G., Mirza, N., Putnam, K.T., Friedman, D.L., Kimmel, L.H., Bergeson, J., Manetti, G.J., Zimmermann, M., Tang, B., Bartko, J.J., Cohen, R.M., 2003. Decreased β-amyloid1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289, 2094–2103.
Takashima A., Murayama M., Murayama O., Kohno T., Honda T., Yasutake K., Nihonmatsu N., Mercken M., Yamaguchi H., Sugihara S. et al. (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc. Natl. Acad. Sci. U. S. A. 95, 9637-9641.
Takahashi M, Tomizawa K, Ishiguro K. (2000) Distribution of tau protein kinase I/glycogen synthase kinase-3beta, phosphatases 2A and 2B, and phosphorylated tau in the developing rat brain. Brain Res. 857, 193-206.
Tapiola T, Overmyer M, Lehtovirta M, Helisalmi S, Ramberg J, Alafuzoff I, Riekkinen P Sr, Soininen H, 1997. The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer’s disease. Neuroreport 8, 3961–3963.
Tapiola, T., Pirtillä, T. , Mikkonen, M., Mehta, P.D., Alafuzoff, I. , Koivisto, K., Soininen, H., 2000. Three-year follow-up of cerebrospinal fluid tau, β-amyloid 42 and 40 concentrations in Alzheimer's disease, Neurosci. Lett. 280, 119–122.
Teng, E.L., Lin, K.N., Chou, P., Wang, S.J., Fuh, J.L., Liu, H.C., 1994. The Cognitive Abilities Screening Instrument, Chinese version (CASI C-2.0) and its pilot study (In Chinese). Psychometr. Tests Instrum. Chin. People, Taipei.
Tsai, R.C., Lin, K.N., Wu, K.Y., Liu, H.C., 2004. Improving the screening power of the Cognitive Abilities Screening Instrument, Chinese version. Dement. Geriatr. Cogn. Disord. 18, 314-320.
Urakami, K., Mori, M., Wada, K., Kowa, H., Takeshima, T., Arai, H., Sasaki, M., Shoji, M., Ikemoto, K., Morimatsu, M., Hikasa, C., Nakashima, K., 1999. A comparison of tau protein in cerebrospinal fluid between corticobasal degeneration and progressive supranuclear palsy. Neurosci. Lett. 259, 127-129
Van Everbroeck, B., Quoilin, S., Boons, J., Martin, J.J., Cras, P., 2003. A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J. Neurol. Neurosurg. Psychiatry 74, 1210-1214.
Vandermeeren, M., Mercken, M., Vanmechelen, E., Six, J., van de Voorde, A., Martin, J.J., Cras, P., 1993. Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J. Neurochem. 61, 1828–1834.
Verbeek, M.M., de Jong, D., Kremer, H.P., 2003. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neuro-degenerative diseases. Ann. Clin. Biochem. 40, 25–40.
Uversky V. N., Winter S., Galzitskaya O. V., Kittler L., and Lober G. (1998) Hyperphosphorylation induces structural modification of tau-protein. FEBS Lett. 439, 21-25.
Wagner U., Utton M., Gallo J. M., and Miller C. C. (1996) Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J. Cell Sci. 109, 1537-1543.
White, L., Petrovitch, H., Ross, G.W., Masaki, K.H., Abbott, R.D., Teng, E.L., Rodriguez, B.L., Blanchette, P.L., Havlik, R.J., Wergowske, G., Chiu, D., Foley, D.J., Murdaugh, C., Curb, J.D., 1996. Prevalence of dementia in older Japanese-American men in Hawaii: The Honolulu-Asia Aging Study. JAMA 276, 955-960.
Yamada, M., Sasaki, H., Mimori, Y., Kasagi, F., Sudoh, S., Ikeda, J., Hosada, Y., Nakamura, S., Kodama, K., 1999. Prevalence and risks of dementia in the Japanese population: RERF’s adult healthy study Hiroshima subjects. Radiation Effects Research Foundation. J. Am. Geriatr. Soc. 47, 189-195.
Zhou X. Z., Kops O., Werner A., Lu P. J., Shen M., Stoller G., Kullertz G., Stark M., Fischer G., and Lu K. P. (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873-883.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.64.132
論文開放下載的時間是 校外不公開

Your IP address is 3.145.64.132
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code