Responsive image
博碩士論文 etd-0622110-113508 詳細資訊
Title page for etd-0622110-113508
論文名稱
Title
氣象因子校正對臭氧濃度影響與雪山隧道空氣污染物分佈研究
Meteorologically adjusted trends of ozone and dispersion of air pollutants in the Hsuehshan Tunnel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
190
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-09
繳交日期
Date of Submission
2010-06-22
關鍵字
Keywords
雪山隧道、紊流模式、臭氧、臭氧趨勢、污染物擴散、氣象因子、多重累加模式、氣象校正、車行活塞效應、垂直通風豎井
Ambient ozone, Ozone trend, Multi-variable additive model, Meteorological factor, Meteorological adjustment, Turbulence Modeling, Hsuehshan Tunnel, Vertical Draft, Pollutant Dispersion, Piston Effect of Vehicles
統計
Statistics
本論文已被瀏覽 5621 次,被下載 1
The thesis/dissertation has been browsed 5621 times, has been downloaded 1 times.
中文摘要
本研究分為兩個部份進行解析與探討,以下分別說明之:

PART Ⅰ 氣象因子校正對臭氧濃度影響

氣象條件的不同可影響臭氧濃度的變化,而臭氧濃度經氣象因子校正後可用以評估臭氧減量之成效。本研究利用多重累加模式解析氣象因子於臭氧濃度之長期趨勢影響。以1997 − 2006年高雄地區空氣品質監測站之O3污染物作長期趨勢探討,分別利用Holland model(未經氣象因子調整)之長期趨勢模擬及robust MM Regression(經氣象因子調整)之長期趨勢模擬以解析探討高雄地區氣象因子對污染物長期趨勢之影響及氣象因子於區域之影響。

模式模擬結果顯示,利用robust MM Regression(經氣象因子校正)進行臭氧濃度長期趨勢,其結果較Holland model(未經氣象因子調整)更為接近測量值。模擬結果顯示高雄縣經氣象因子校正後O3月(年)平均濃度上升趨勢為13.84% (13.06%),小於未經氣象因子校正之上升趨勢為26.10% (23.80%)。而高雄市經氣象因子校正後O3月(年)平均濃度上升趨勢為9.01% (6.88%),小於未經氣象因子校正之上升趨勢為22.01% (19.67%)。

影響高雄地區O3濃度最主要的3個氣象因子分別為風速、日照與氣壓。

PART Ⅱ 雪山隧道空氣污染物分佈

本研究亦針對雪山隧道內空氣污染物(CO與NOx)之濃度變化及三維流場分佈,進行實測與數值模擬解析。雪山隧道總長12.9公里,隧道可分為南下(東行)與北上(西行)。本研究於2008年11月14 − 17日期間進行實際量測,以泵浦與空氣採樣袋等設備於隧道之入、出口及三個豎井採集CO與NOx,並利用自動分析儀進行定量分析。另以計算流體力學軟體(STAR-CD)進行隧道內三度空間亂流場分佈解析。

現場實測結果發現,結果顯示交通流量與污染物濃度假日皆高於平日。平均而言,空氣污染物CO濃度於南北雙向出口處(14.5 − 22.8 ppm)約為入口處3倍(3.2 − 7.3 ppm);NOx濃度於南北雙向出口處(1.9 − 2.9 ppm)約為入口處4至5倍(0.3 − 0.8 ppm),而通風豎井空氣污染物濃度以2號通風豎井為最高(CO = 12.3 ppm, NOx = 1.9 ppm),1號與3號豎井次之。

三維數值模式模擬結果顯示,影響隧道內空氣流動最主要的因素為車輛移動與軸向風扇開啟。三維數值分析模式模擬結果能呈現出實際濃度分佈情形,並解析污染物於隧道斷面產生濃度層化現象,其污染物濃度由入口往出口方向逐漸增加,從地面往隧道頂端逐漸降低。模式模擬結果皆屬合理與良好。
Abstract
This study separated two parts:

PART Ⅰ Meteorologically adjusted trends of ozone

Since meteorological changes strongly affect ambient ozone concentrations, trends in concentrations of ozone upon the adjustment of meteorological variations are important of evaluating emission reduction efforts. This work is to study meteorological effects on the long-term trends of ozone concentration using a multi-variable additive model in Kaohsiung. The long-term trends of ozone concentration were analyzed using the Holland model (without meteorological-adjusted) and the robust MM Regression model (with meteorological-adjusted) based on the data of eight EPA air quality stations from 1997 to 2006 in Kaohsiung area.

According to the result of the simulation, the simulated value of the robust MM-Regression model present more valid than the Holland model.The simulated results show that the long-term ozone concentration increases at 13.84% (or 13.06%) monthly (or annually) after meteorological adjustments, less than at 26.10% (or 23.80%) without meteorological adjustments in Kaohsiung county. The simulated results show that the long-term ozone concentration increases at 9.01% (or 6.88%) monthly (or annually) after meteorological adjustments, less than at 22.01% (or 19.67%) without meteorological adjustments in Kaohsiung city. Wind speed, duration of sunshine and pressure are the three dominant factors that influence the ground-level ozone levels in Kaohsiung area.

PART Ⅱ Dispersion of air pollutants in the Hsuehshan Tunnel

Concentrations of carbon monoxide (CO) and nitrogen oxides (NOx) were measured from November 14 – 17 2008 in a cross-mountain Hsuehshan traffic tunnel stretching 12.9 km and containing eastward and westward channels. Air pollutants of CO (carbon monoxide) and NOx (nitrogen oxides) will be monitored at the inlet, outlet and vertical shafts of the tunnel. Meanwhile, numerical simulation of three-dimensional turbulent flow will be performed using STAR-CD software.

Traffic and pollutant concentrations during the weekends exceeded those during the weekdays. Measured concentrations of CO at the two tunnel outlets (14.5 – 22.8 ppm) were approximately three times higher than those at the two tunnel inlets (3.2 – 7.3 ppm), while concentrations of NOx at the two tunnel outlets (1.9 – 2.9 ppm) were approximately four to five times higher than those at the two tunnel inlets (0.3 – 0.8 ppm). The outlet of vertical draft 2 had the highest pollutant concentrations (CO = 12.3 ppm; NOx = 1.9 ppm), followed by vertical drafts 1 and 3.

Three-dimensional turbulence modeling results indicate that airflow in the tunnel was primarily driven by the combined effects of axial fans and vehicles. Results of this study demonstrate that simulated pollutant concentrations increase downstream and are vertically stratified, due to tailpipe exhausts close to tunnel floor. Simulations agreed fairly well with measurements.
目次 Table of Contents
謝誌..............................................................................I
摘要............................................................................. 摘-1
目錄............................................................................. Ⅰ
表目錄......................................................................... Ⅴ
圖目錄......................................................................... Ⅵ

PART Ⅰ 氣象因子校正對臭氧濃度影響

第一章 前言.................................................................1-1
1.1 研究緣起................................................................1-1
1.2 研究目的................................................................1-2

第二章 文獻回顧..........................................................2-1
2.1 大高雄地區空氣趨勢變化......................................2-1
2.1.1 高高屏空品區PSI趨勢變化................................2-1
2.1.2 臭氧濃度趨勢變化..............................................2-3
2.2 大高雄地區污染物排放量概估.............................2-7
2.2.1 高雄縣..................................................................2-7
2.2.2 高雄市..................................................................2-8
2.3臭氧形成理論及影響...............................................2-12
2.4 大高雄地區氣象概述..............................................2-14
2.5 空氣品質長期趨勢相關文獻..................................2-17

第三章 研究方法............................................................3-1
3.1 研究架構與流程.......................................................3-1
3.2 臭氧長期趨勢分析方法...........................................3-2
3.2.1 未經氣象因子調整之長期趨勢分析方法............3-2
3.2.2 經氣象因子調整之長期趨勢分析方法................3-3
3.3評估工具.....................................................................3-4

第四章 結果與討論..........................................................4-1
4.1 臭氧濃度長期趨勢分析之結果................................4-1
4.1.1 未經氣象因子校正之模擬結果.............................4-1
4.1.2 加入氣象因子校正之模擬結果.............................4-5
4.2 高雄縣臭氧濃度之長期趨勢分析............................4-9
4.2.1 季節變化長期趨勢分析.........................................4-10
4.2.2 年變化長期趨勢分析.............................................4-12
4.2.2 受氣象因子影響程度分析.....................................4-12
4.3 高雄市臭氧濃度之長期趨勢分析............................4-14
4.3.1 季節變化長期趨勢分析.........................................4-14
4.3.2 年變化長期趨勢分析.............................................4-16
4.3.3 受氣象因子影響程度分析.....................................4-16

第五章 結論與建議..........................................................5-1
5.1 結論............................................................................5-1
5.2 建議............................................................................5-2

PART Ⅱ 雪山隧道空氣污染物分佈研究

第六章 前言.....................................................................6-1
6.1 研究緣起...................................................................6-1
6.2 研究目的...................................................................6-2

第七章 文獻回顧.............................................................7-1
7.1 雪山隧道概況...........................................................7-1
7.1.1 背景與幾何結構....................................................7-2
7.1.2 交通資料與特性....................................................7-4
7.1.3 空氣品質特性........................................................7-5
7.2 隧道通風系統...........................................................7-7
7.2.1 自然通風................................................................7-8
7.2.2 強制通風................................................................7-9
7.3 國內外隧道相關文獻探究.......................................7-11
7.4 模式模擬相關研究...................................................7-18
7.4.1 計算流體動力模式 ...............................................7-18
7.4.2 高斯模式................................................................7-20
7.4.3 箱型模式................................................................7-21
7.4.4 受體模式................................................................7-22

第八章 研究方法.............................................................8-1
8.1 研究架構與流程.......................................................8-1
8.2 採樣與分析方法.......................................................8-2
8.2.1 採樣規劃................................................................8-2
8.2.2 採樣儀器及設備....................................................8-3
8.2.3 分析方法................................................................8-4
8.2.4 品保與品管............................................................8-5
8.3 STAR-CD概述與模式假設......................................8-8
8.3.1 流場基本假設........................................................8-8
8.3.2 制御方程式............................................................8-9
8.3.3 紊流模式................................................................8-10
8.3.4車輛污染物排放率之推估.....................................8-13
8.3.5車行擾流效應與壁函數.........................................8-13
8.3.6模式邊界條件.........................................................8-15
8.3.7數值計算方法.........................................................8-17
8.3.8數值網格安排與收斂準則.....................................8-21
8.3.9模式與統計評估工具.............................................8-22

第九章 結果與討論.........................................................9-1
9.1隧道氣象資料及交通資料.........................................9-1
9.1.1氣象資料..................................................................9-1
9.1.2交通資料..................................................................9-6
9.2 空氣污染物時空變化................................................9-10
9.2.1 隧道污染物濃度分佈變化.....................................9-10
9.2.2 豎井污染物濃度分佈變化.....................................9-20
9.2.3 隧道污染物相關性分析.........................................9-21
9.3 雪山隧道排放係數....................................................9-22
9.4 模式模擬結果............................................................9-27
9.5 模式模擬值與實測值之比對....................................9-35
9.6 隧道內污染物擴散分佈之模擬結果........................9-37

第十章 結論與建議..........................................................10-1
10.1 結論..........................................................................10-1
10.2 建議..........................................................................10-4

參考文獻...........................................................................參-1

附錄A 雪山隧道採樣資料.............................................附A-1
附錄B 雪山隧道交通資料.............................................附B-1
附錄C 作者簡歷............................................................附C-1
參考文獻 References
Anderberg, M.R., 1973. Cluster analysis for applications. New York: Academic Press.
Arbeiter, F., Gordeev, S., Heinzel, V., Leichtle, D., Stratmanns, E., 2007. Mini-channel flow experiments and CFD validation analyses with the IFMIF thermo-hydraulic experimental facility (ITHEX). Fusion Engineering and Design 82, 2456 − 2461.
Arbeiter, F., Gordeev, S., Heinzel, V., Slobodtchouk, V., 2006. Analysis of turbulence models for thermohydraulic calculations of helium cooled fusion reactor components. Fusion Engineering and Design 81, 1555 − 1560.
Baker, C.J., Hargreaves, D.M., 2001. Wind tunnel evaluation of a vehicle pollution dispersion model. Journal of Wind Engineering and Industrial Aerodynamics 89, 187 − 200.
Bari S., Naser J., 2010. Simulation of airflow and pollution levels caused by severe traffic jam in a road tunnel. Tunnelling and Underground Space Technology 25, 70 − 77.
Bellasio, R., 1997. Modelling traffic air pollution in road tunnels. Atmospheric Environment 31, 1539 − 1551.
Bishop, G.A., McLaren, S.E., Stedman, D.H., Pierson, W.R., Zweidinger, R.B., Ray, W.D., 1996. Method comparisons of vehicle emissions measurements in the Fort McHenry and Tuscarora mountain tunnels. Atmospheric Environment 30, 2307 – 2316.
Bogdan S., Birgmajer B., Kovacˇic Z., 2008. Model predictive and fuzzy control of a road tunnel ventilation system. Transportation Research Part C 16, 574 – 592.
Bring A., Malmstrom T.G., Boman C.A., 1997. Simulation and measurement of road tunnel ventilation. Tunnelling and Underground Space Technology 12, 417 – 424.
Brousse B., Vidal B., Ponticq X., Ghislaine Goupil G., Alary R., 2005. Pollution dispersion at an urban motorway tunnel portal: Comparison of the small-scale predictive study with the actual conditions measured on the site. Atmospheric Environment 39, 2459 – 2473.
Casale, E., Charvier, J.M., Lemaire, G., 1994. Tunnel ventilation system modlling. 8th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, 69 − 82.
Chaloulakou, A., Grivas, G., Spyrellis, N., 2003. Neural network and multiple regression models for PM10 prediction in Athens: a comparative assessment. Journal of the Air & Waste Management Association 53, 1183 – 1190.
Chan, T.L., Dong, G., Leung, C.W., Cheung, C.S., Hung, W.T., 2002. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon. Atmospheric Environment 36, 861 − 72.
Chang, T.Y., Rudy, S.J., 1990. Road tunnel air quality models. Environmental Science & Technology 24, 672 – 676.
Chang, Y. R., Chen, K. S., 1995. Prediction of opposing turbulent line jets discharged laterally into a confined cross flow. International Journal of Heat and Mass Transfer 38, 1693 − 1703.
Chen, K. S., Li, H. C., Wang, H. K., Wang, W. C., Lai, C. H., 2009. Measurement and receptor modeling of atmospheric polycyclic aromatic hydrocarbons in urban Kaohsiung, Taiwan. Journal of Hazardous Materials 166, 873 – 879.
Chen, K.S., Chung, C.Y., Wang, S.W., 2002. Measurement and three-imensional modeling of airflow and pollutant dispersion in an undersea traffic tunnel. Journal of the Air & Waste Management Association 52, 349 − 363.
Chen, K.S., Ho, Y.T., Lai, C.H., Chou, Y.M., 2003. Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kao-hsiung, Taiwan. Atmospheric Environment 37, 1811 – 1823.
Chen, K.S., Lin, C.F., Chou, Y.M., 2001. Determination of source contributions to ambient PM2.5 in Kaohsiung, Taiwan, using a receptor model. Journal of the Air and Waste management Association 51, 489 – 498.
Chiang, H.L., Hwu, C.S., Chen, S.Y., Wu, M.C., Ma, S.Y., Huang, Y.S., 2007. Emission factors and characteristics of criteria pollutants and volatile organic compounds (VOCs) in a freeway tunnel study. Science of the Total Environment 381, 200 − 211.
Chung, C.Y., Chen, K.S., Yuan, C.S., Hung, C.H., 2001. Modeling of air pollutant dispersion in a longitudinal ventilated traffic tunnel. Journal of t the Chinese Institute of Environmental Engineering 11, 237 − 244.
Chung, C.Y., Chung, P.L., 2007. A numerical and experimental study of pollutant dispersion in a traffic tunnel. Environmental Monitoring and Assessment 130, 289 − 299.
Colberg, C.A., Tona, B., Catone, G., Sangiorgio, C., Stahel, W.A., Sturm, P., Staehelin, J., 2005. Statistical analysis of the vehicle pollutant emissions derived from several European road tunnel studies. Atmospheric Environment, 39, 2499 – 2511.
Cox, W.M., Chu, S.H., 1993. Meteorologically adjusted ozone trends in urban areas: a probabilistic approach. Atmospheric Environment 27B, 425 – 434.
Craig, K.J., de Kock, D.J., Snyman, J.A., 2001. Minimizing the e!ect of automotive pollution in urban geometry using mathematical optimization. Atmospheric Environment 35, 579 − 587.
Derwent, R.G., Simmonds, P.G., Seuring, S., Dimmer, C., 1998, Observation and interpretation of the seasonal cycles in the surface concentrations of ozone and carbon monoxide at mace head, Ireland from 1990 to 1994. Atmospheric Environment, 32, 145 – 157.
Dolomiti V., 1997. Modelling traffic air pollution in road tunnels roberto bellasio. Atmospheric Environment 31, 1539 − 1551.
El-Fadel M., Hashisho Z., 2000. Vehicular emissions and air quality assessment in roadway tunnels: the Salim Slam tunnel. Transportation Research Part D 5, 355 – 372.
EPA (US Environmental Protection Agency), 2005. Evaluating ozone control programs in the eastern United States. EPA454-K-05-001, Washington, DC.
Flaum, J.B., Rao, S.T., Zurbenko, I.G., 1996. Moderating the influence of meteorological conditions on ambient ozone concentrations. Journal of the Air & Waste Management Association 46, 35 – 46.
Gardner, M.W., Dorling, S.R., 1998. Artificial neural networks (the multilayer perceptron – a review of applications in the atmospheric sciences. Atmospheric Environment 32, 2627 – 2636.
Gardner, M.W., Dorling, S.R., 2000. Meteorologically adjusted trends in UK daily maximum surface ozone concentrations. Atmospheric Environment 34, 171 – 176.
Ghim, Y.S., Oh, H.S., Chang, Y.S., 2001. Meteorological effects on the evolution of high ozone episodes in the Greater Seoul Area. Journal of the Air & Waste Management Association 51, 185 – 202.
Gidhagen L., Johansson C., Strom J., Kristensson A., Swietlicki E., Pirjola L., Hansson H.C., 2003. Model simulation of ultrafine particles inside a road tunnel. Atmospheric Environment 37, 2023 – 2036.
Gluck C., 2006. Asia's longest road tunnel opens. http://home.no.net/lotsberg/data/taiwan/list.html.
Gorse, R.A., 1984. On-road emission rates of carbon monoxide, nitrogen oxides, and gaseous hydrocarbons. Environmental Science & Technology 18, 500 − 507.
Gromke, C., Buccolieri, R., Sabatino, S.D., Ruck, B., 2008. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations  Evaluation of CFD data with experimental data. Atmospheric Environment 42, 8640 − 8650.
Grosjean, D., Grosjean, E., Gertler, A.W., 2001. On-road emissions of carbonyls from light-duty and heavy-duty vehicles. Environmental Science & Technology 35, 45 – 53.
Guo, H., Ding, A.J., So, K.L., Ayoko, G., Li, Y.S., Hung, W.T., 2009. Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution. Atmospheric Environment 43, 1159 – 1169.
Haerter, A.A., 1973. Fresh air requirements for road tunnels. 1st International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels B1, 1 – 17.
Harrison, R.M., Deacont, A.R., Jones, M.R., 1997. Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.). Atmospheric Environment 31, 4103 – 4117.
Holland, D.M., Principe, P.P., Sickles, J.E., 1999. Trends in atmospheric sulfur and nitrogen species in the eastern United States for 1989-1995. Atmospheric Environment 33, 37 – 49.
Holmes, N.S., Morawska, L., 2006. A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric Environment 40, 5902 − 5928.
Hsu, Y.C., Tsai, J.H., Chen, H.W., Lin, W.Y., 2001. Tunnel study of on-road vehicle emissions and the photochemical potential in Taiwan. Chemosphere 42, 227 − 234.
Hung, C.H., 2003. Analysis of air flow pattern and pollution control in the mini-environment of injection molding clean room. M.S. thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan.
Hurley, P., 2005a. The Air Pollurion Model (TAPM) Version 3. Part 1: Technical description. CSIRO Atmospheric Research Technical NO. 71.
Hurley, P., 2005b. The Air Pollurion Model (TAPM) Version 3. User manual. CSIRO Atmospheric Research Internal Paper NO.31.
Hurley, P., Manins, P., Lee, S., Boyle, R., Ng, Y.L., Dewundege, P., 2003. Year long, high-resolution, urban airshed modelling: verification of TAPM predictions of smog and particles in Melbourne, Australia. Atmospheric Environment 37, 1899 – 1910.
Hurley, P.J., Blockley, A., Rayner, K., 2001. Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia. Atmospheric Environment 35, 1871 – 1880.
Hwa, M.Y., Hsieh, C.C., Wu, T.C., Chang, L.F.W., 2002. Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmospheric Environment 36, 1993 − 2002.
Jamriska, M., Morawska, L., Thomas, S., He, C., 2004. Diesel bus emissions measured in a tunnel study. Environmental Science & Technology 38, 6701 − 6709.
John, C., Friedrich, R., Staehelin, J., Schlapfer, K., Stahel, W.A., 1999. Comparison of emission factors for road traffc from a tunnel study (Gubrist tunnel, Switzerland) and from emission modeling. Atmospheric Environment 33, 3367 − 3376.
Katolicky´, J., Jı´cha, M., 2005. Eulerian–Lagrangian model for traffic dynamics and its impact on operational ventilation of road tunnels. Journal of Wind Engineering and Industrial Aerodynamics 93, 61 – 77.
Kim J.J., Baik J.J., 2003. Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. Journal of Wind Engineering and Industrial Aerodynamics 91, 309 – 329.
Konstantinov, A., Staroselsky, I., Orszag, S.A., Yakhot, V., 1998. Renormalization group-based transport modeling of premixed turbulent combustion: I. incompressible deflagration model. Journal of Scientific Computing 13, 229 − 252.
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G., 2003. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment 37, 4539 – 4550.
Lai, C.H., Chen, K.S., Chang, P.J., Peng, Y.P., Tasi, P.C., 2008. Emission factors of volatile organic compounds in a long freeway tunnel. The Air & Waste Management Association’s 101th Annual Conference & Exhibition, Portland, USA.
Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computers and Mathematics in Applied Mechanics and Engineering 3, 269 – 289.
Lee, Y.C., Jeng, F.T., Chen, L.Y., 2005. Influence of Taipei-Ilan Expressway on the Air Quality of Ilan. The Air & Waste Management Association’s 98th annual conference & exhibition, Minneapolis, USA.
Li, H. C., Chen, K. S., Huang, C. H., Wang, H. K., 2010, Meteorologically adjusted long-term trend of ground-level ozone concentrations in Kaohsiung County, southern Taiwan. Atmospheric Environment (accept).
Li, H. C., Wang, W. C., Chen, K. S., Chen, J. S., 2008. Long-term trend analysis of meteorologically adjusted primary air pollutants in Kao-Ping Area, Taiwan. The 7th International Symposium on Advanced Environmental Monitoring 123, Feb. 25 – 28, Honolulu, Hawaii, USA.
Li, H. C., Wang, W. C., Huang, C. H., Liao, K. C., Chen, K. S., 2009. Long-term trend analysis of meteorologically adjusted concentrations of primary air pollutants in Kaohsiung County, southern Taiwan. The Air & Waste Management Association’s 102nd annual conference & exhibition, Jun. 16 – 19, Detroit, USA.
Li, H. C., Chen, K. S., Lai, C. H., 2010. Air flow and pollutant dispersion in the Hsuehshan traffic tunnel of northern Taiwan. Atmospheric Environment (to be submitted).
Lin C.J., Chuah Y.K., 2008. A study on long tunnel smoke extraction strategies by numerical simulation. Tunnelling and Underground Space Technology 23, 522 – 530.
Liou, T.M., Chang, Y., Hwang, D.W., 1990. Experimental and computational study of turbulent flows in a channel with two pairs of turbulence promoters in tandem. Journal of Fluids Engineering 112, 302 − 310.
Lodge Jr., J. P., 1989. Methods of air sampling and analysis. 3rd ed., Lewis Publishers, Inc., Chelsea, Michigan.
Lu, H.C., Chang, T.S., 2005. Meteorologically adjusted trends of daily maximum ozone concentrations in Taipei, Taiwan. Atmospheric Environment 39, 6491 – 6501.
Mensink, C., Colles A., Janssen, L., Cornelis, J., 2003. Integrated air quality modelling for the assessment of air quality in streets against the council directives. Atmospheric Environment 37, 5177 − 5184.
Migoya E., Crespo A., Garcı’a J., Herna´ndez J., 2009. A simplified model of fires in road tunnels. Comparison with three-dimensional models and full-scale measurements. Tunnelling and Underground Space Technology 24, 37 – 52.
Monks, P.S., Salisbury, G., Holland, G., Penkett, S.A., Ayers, G.P., 2000. A seasonal comparison of ozone photochemistry in the remote marine boundary layer. Atmospheric Environment 34, 2547 – 2561.
NRC (National Research Council), 1991. Rethinking the ozone problem in urban and regional air pollution. National Academy Press: Washington, DC.
Oettl D., Sturm P., Almbauer R., Okamoto S., Horiuchi K., 2003. Dispersion from road tunnel portals: comparison of two different modelling approaches. Atmospheric Environment 37, 5165 – 5175.
Oettl D., Sturm P.J., Bacher M., Pretterhofer G., Almbauer R.A., 2002. A simple model for the dispersion of pollutants from a road tunnel portal. Atmospheric Environment 36, 2943 – 2953.
Oettl, D., Sturm, P., Almbauer, R., 2005. Evaluation of GRAL for the pollutant dispersion from a city street tunnel portal at depressed level. Environmental Modelling and Software 20, 499 – 504.
Olson, D.A., Turlington, J., Duvall, R.M., McDow, S.R., Stevens, C.D., Williams, R., 2008. Indoor and outdoor concentrations of organic and inorganic molecular markers: Source apportionment of PM2.5 using low-volume samples. Atmospheric Environment 42, 1742 – 1751.
Owen, B., Peace, H., Raper, D.W., 2002. Comparison of road traffic emission factors and testing by comparison of modeled and measured ambient air quality data. Presentation at Seventh International Highway & Urban Pollution Symposium Barcelona.
Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.
Permanent International Association of Road Congresses (PIARC), 1995. Technical Paper: Road tunnels - Emissions, Ventilation, Environment.
Pospisil J., Katolicky J., Jicha M., 2004. A comparison of measurements and CFD model predictions for pollutant dispersion in cities. Science of the Total Environment 334 – 335, 185 – 195.
Reggio, M., McKenty, F., Gravel, L., Cortes, J., Morales, G., Ladron de Guevara, M.A., 2002. Computational analysis of the process for manufacturing seamless tubes. Applied Thermal Engineering 22, 459 − 470.
Robert, A., Gorse, Jr., 1984. On-road emission rates of carbon monoxide, nitrogen oxides, and gaseous hydrocarbons. Environmental Science & Technology, 18, 500 – 507.
Sabatino, S.D., Kastner-Klein, P., Berkowicz, R., Britter, R.E., Fedorovich, E., 2003. The modelling of turbulence from traffic in urban dispersion models  part I: theoretical considerations. Environmental Fluid Mechanics 3, 129 − 143.
Sambolek M., 2004. Model testing ofroad tunnel ventilation in normal traffic conditions. Engineering Structures 26, 1705 – 1711.
Schlink, U., Dorling, S., Pelikanc, E., Nunnari, G., Cawley, G., Junninen, H., Greig, A., Foxall, R., Eben, K., Chatterton, T., Vondracek, J., Richter, M., Dostal, M., Bertuccod, L., Kolehmainen, M., Doyle, M., 2003. A rigorous inter-comparison of ground-level ozone predictions. Atmospheric Environment 37, 3237 – 3253.
Schmid, H., Pucher, E., Ellinger, R., Biebl, P., Puxbaum, H., 2001. Decadal reductions of traffic emissions on a transit route in Austria-results of the Tauern tunnel experiment 1997. Atmospheric Environment 35, 3585 − 3593.
Schwartz J., 1994. Air pollution and daily mortality: a review and meta analysis. Environmental Research 64, 36 − 52.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, Inc., New York.
Shih, T.H., Zhu, J., Lumley, J.L., 1995. A new Reynolds stress algebraic equation model. Computer Methods in Applied Mechanics and Engineering 125, 287 − 302
Shreffler, J.H., Barnes, H.M., 1996. Estimation of trends in atmospheric concentrations of sulfate in the northeastern United States. Journal of the Air & Waste Management Association 46, 621 – 630.
Sillman, S., 1995. The use of NOy, H2O2 and HNO3 as indicators for ozone-NOx-hydrocarbons sensitivity in urban locations. Journal of Geophysical Research 100, 14175 – 14188.
Simpson, D., Olendrzynski, K., Semb, A., Storen, E., Unger, S., 1997. Photochemical oxidant modelling in Europe: multiannual modeling and source-receptor relationships. Technical Report EMEP MSC-W Report 3/97, Norwegian Meteorological Institute, P.O. Box 43-Blindern, N-0313 Oslo 3, Norway.
Sokhi, R., Fisher, B., 1998. Modelling of air quality around roads. In: Proceedings of the 5th International Conference on Harmonisation with Atmospheric Dispersion Modelling for Regulatory Purposes, Greece.
Solazzo E., Cai X., Vardoulakis S., 2009. Improved parameterisation for the numerical modelling of air pollution within an urban street canyon. Environmental Modelling & Software 24, 381 – 388.
Solazzo, E., Cai, X., Vardoulakis, S., 2008. Modeling wind flow and vehicle-induced turbulence in urban streets. Atmospheric Environment 42, 4918 – 4931.
Soulhac, L., Puel, C., Duclaux, O., Perkins, R.J., 2003. Simulations of atmospheric pollution in greater Lyon an example of the use of nested models. Atmospheric Environment 37, 5147 − 5156.
STAR-CD Version 4.06 Documentation, 2008. CD-adapco.
STAR-CD, 2008. CD-adapco Software Inc., Yokohama, Japan.
The World's longest Tunnel Page, 2010. The World's longest Road Tunnels. http://www.lotsberg.net/data/tun10.html.
Thompson, M.L., Reynolds, J., Cox, L.H., Guttorp, P., Sampson, P.D., 2001. A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmospheric Environment 35, 617 – 630.
Thomson, D.J., Manning, A.J., 2001. Along-wind dispersion in light wind conditions. Boundary-Layer Meteorology 98, 341 − 358.
Thurston, G.D., Spengler, J.D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment 19, 9 – 25.
Tsai, M.Y., Chen, K.S., 2004. Measurement and three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon. Atmospheric Environment 38, 5911 – 5924.
Tsai, M.Y., Chen, K.S., Wu, C.H., 2005. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects. Journal of the Air and Waste management Association 55, 1178 – 1189.
Tsai, Y.I., Chen, C.L., 2006. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmospheric Environment 40, 4751 − 4763.
Turner, D.B., 1994. Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling. 2nd ed., Lewis Publishers, Boca Raton, FL.
Vega M.G., Dı´az K.M.A., Oro J.M.F., Tajadura R.B., Morros C.S., 2008. Numerical 3D simulation of a longitudinal ventilation system:Memorial Tunnel case. Tunnelling and Underground Space Technology 23, 539 – 551.
Viney, P.A., Arya, S.P., Li, Y., Murray, G.C., Manuszak, T.L., 2000. Climatology of diurnal trends and vertical distribution of ozone in the atmosphere boundary layer in urban North Carolina; Journal of the Air & Waste Management Association 50, 54 – 64.
Wang F., Wang M., Zhang J., Deng Y., 2010. Computational study of effects of jet fans on the ventilation of a highway curved tunnel. Tunnelling and Underground Space Technology 25, 382 – 390.
Wang, W. C., Chen, K. S., Wang, S. K., Lee, H. C., Tsai, M. Y., 2009. Modeling atmospheric PM10 concentrations during severe pollution events in southern Taiwan. Atmospheric Research 92, 159 – 171.
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’Donnell, J., Rowe, C.M., 1985. Statistics for the evaluation and comparisons of model. Journal of Geophysical Research 90, 8995 − 9005.
Wilson, J.G., Zawar-Reza, P., 2006. Intraurban-scale dispersion modelling of particulate matter concentrations: Applications for exposure estimates in cohort studies. Atmospheric Environment 40, 1053 – 1063
Wu, C.T., 2002. Numerical simulations of the gaseous fuel in a combustion flow. M.S. thesis, Department of Aeronautles and Astronautics, National Cheng Kung University, Tainan, Taiwan.
Xu, D., Yap, D., Taylor, P.A, 1996. Meteorologically adjusted ground level ozone trends in Ontario. Atmospheric Environment 30, 1117 – 1124.
Yohai, V.J., 1987. High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics 15, 642 – 656.
Yuan F.D., You S.J., 2007. CFD simulation and optimization of the ventilation for subway side-platform. Tunnelling and Underground Space Technology 22, 474 – 482.
Zawar-Reza, P., Kingham, S., Pearce, J., 2005. Evaluation of a year-long dispersion modelling of PM10 using the mesoscale model TAPM for Christchurch, New Zealand. Science of the Total Environment 349, 249 − 259.
Zheng, J., Swall, J.L., Cox, W.M., Davis, J.M., 2007. Interannual variation in meteorologically adjusted ozone levels in the eastern United States: a comparison of two approaches. Atmospheric Environment, 41, 705 – 716.
王文正,2008。以空氣品質模式及受體模式解析懸浮微粒排放源之貢獻量。博士論文,國立中山大學環境工程研究所。
王辰文,2009。以空氣擴散模式評估雪山隧道移動車輛尾氣排放對鄰近空氣品質之影響。碩士論文,國立中山大學環境工程研究所。
交通部國道高速公路局,2009。高速公路局 路段交通量通報系統。http://211.79.135.72/linkvol/menu.htm
交通部臺灣區國道新建工程局,2010。雪山隧道專區。http://gip.taneeb.gov.tw/mp.asp
仲崇毅,2002。交通隧道三維風場及氣態污染物擴散現象之研究。博士論文,國立中山大學環境工程研究所。
李翰杰、陳康興、黃錦宏、王辰文、陳怡全、王信凱,2009a。雪山隧道內三維流場數值解析。中華民國環境工程學會第二十一屆年會暨各專門學術研討會論文摘要集,p.244,民國98年11月6 – 7日,國立雲林科技大學。
李翰杰、陳康興、黃錦宏、王辰文、陳怡全、王信凱,2009b。雪山隧道空氣污染物實場調查分析。中華民國環境工程學會第二十一屆年會暨各專門學術研討會論文摘要集,p.283,民國98年11月6 – 7日,國立雲林科技大學。
李宏徹,2007。雪山隧道空氣溫度評估。第六屆海峽兩岸隧道與地下工程學術與技術研討會,昆明。
林達雄,蕭慧娟,朱雨其,張順欽,邱富淞,簡瑞清,2007。雪山隧道空氣品質監測及車輛污染排放係數調查。行政院環境保護署,九十五年度自行研究計畫。
空氣污染防制專責人員訓練教材,2007。空氣污染源排放特性與排放推估,6頁。
邱皓政,2006。量化研究與統計分析,台北,五南圖書出版股份有限公司。
徐淵靜,1989。道路隧道噪音與空氣污染之研究。國科會研究報告,NSC 78-0410-E009-005。
張致瑋,2006。隧道車流量、車種與氣固相污染物之相關性研究。碩士論文,國立成功大學環境工程研究所。
張柏瑞,2008。雪山隧道內車輛與豎井通風系統之揮發性有機物排放量推估。碩士論文,國立中山大學環境工程研究所。
許中杰,1995。長隧道通風技術之研究(二)子題貳 – 長隧道通風車行效應與半二維向流場之研究。淡江大學,研究報告066。
陳可賀,2006。國道5號雪山隧道空氣品質設計與實測。國道網180 期。
陳怡全,2009。雪山隧道空氣污染物實場調查分析。碩士論文,國立中山大學環境工程研究所。
陳家修,2007。高高屏地區主要空氣污染物經氣象因子校正後之長期趨勢變化研究。碩士論文,國立中山大學環境工程研究所。
陳康興、袁中新、蔡孟裕、王信凱、李翰杰、黃錦宏、廖坤泉,2007。中鋼公司煙囪採樣孔位置下移之研究評估,中國鋼鐵股份有限公司。
陳發林,1996。隧道溫升問題研究。交通部台灣區國道新建工程局,研究報告079。
廖坤泉,2008。大高雄地區主要空氣污染物經氣象因子修正之長期趨勢分析及事件日測站污染型態統計檢定。碩士論文,國立中山大學環境工程研究所。
蔡孟裕,2005。街谷中三維尺度空氣污染物擴散現象之研究。博士論文,國立中山大學環境工程研究所。
顏有利,林文印,邱顯文,2006。八卦山隧道揮發性有機物排放特性分析。中華民國環境工程學會第十八屆年會暨各專門學術研討會數位光碟論文集,空氣污染控制技術研討會,東海大學。
顏有利,林文印,徐成炘,邱顯文,2007。雪山隧道揮發性有機物排放係數分析。中華民國環境工程學會第十九屆年會暨各專門學術研討會數位光碟論文集,空氣污染控制技術研討會,高雄大學。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.124.232
論文開放下載的時間是 校外不公開

Your IP address is 3.144.124.232
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code