Responsive image
博碩士論文 etd-0622110-172307 詳細資訊
Title page for etd-0622110-172307
論文名稱
Title
關於隨機股價之選擇權價值之有限體積法
On a Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-10
繳交日期
Date of Submission
2010-06-22
關鍵字
Keywords
歐式選擇權價值、有限體積法、隨機股價波動度、Black-Scholes 方程、穩定性與收斂性
stability and convergence, finite volume method, European option pricing, stochastic volatility, Black-Scholes equation
統計
Statistics
本論文已被瀏覽 5831 次,被下載 1136
The thesis/dissertation has been browsed 5831 times, has been downloaded 1136 times.
中文摘要
一開始我們先公式化Black-Scholes方程並且表示出它的收斂性. 然後我們找到一個基底函數使得我們得以公式化成Petrov-Galerkin有限元素法. 我們證明這樣的雙線性模式是coercive與連續的. 我們也說這樣的離散解有order h的誤差. 最後我們也用數值模擬了整個二維模型並且與一維模型做比較. 我們也得到這樣的二維模型是滿足M矩陣.
Abstract
In this dissertation we first formulate the Black-Scholes equation with a tensor (or matrix) diffusion coefficient into a conservative form and present a convergence analysis for the two-dimensional Black-Scholes equation arising in the Hull-White model for pricing European options with stochastic volatility. We formulate a non-conforming Petrov-Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems defined on element edges. We show that the bilinear form of the finite element method is coercive and continuous and establish an upper bound of order O(h) on the discretization error of method, where h denotes the mesh parameter of the discretization. We then present a finite volume method for the resulting equation, based on a fitting technique proposed for a one-dimensional Black-Scholes equation. We show that the method is monotone by proving that the system matrix of the discretized equation is an M-matrix. Numerical experiments, performed to demonstrate the usefulness of the method, will be presentd.
目次 Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 The Continuous Problem and its Solvability . . .. . 4
2.1 The Continuous Problem . . . . . . . . . . . . . . . . .. . 4
2.2 The Existence and Uniqueness . . . . . . . . . . . . . . . 6
2.2.1 Coercivity of the Bilinear Form B(·, ·; t) . . . . .. . . . 7
2.2.2 Continuity of the Bilinear Form B(·, ·; t) . . . . . . . . 8
3 The Finite Element Method . . . .11
3.1 The Finite Element Formulation of the Discretization Scheme . . . . . 11
3.2 Stability and Error Analysis of the Method . . . . . . 15
3.2.1 Lower Bound for the Bilinear Form B(·, ·) . . . . . 16
3.2.2 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 The Finite Volume Method. . . . . . . . . 25
4.1 The Formulation for the Flux κ(f) on Different Intervals . . . . . . . . 26
4.2 The Finite Volume System . . . . . . . . . .. . . . . . . . 29
4.3 Boundary Conditions and Payoff Conditions . . . 32
5 Numerical Experiments . . . . . . . . 34
5.1 Ramp Payoff Final Condition . . . . . . . . . . . . . . .. . . 34
5.2 Cash-or-Nothing Final Condition . . . . . . . . . . . . . 37
5.3 Portfolio of Options . . . . . . . . . . . . . . .. . . . . . . 39
5.4 2-D and 1-D Simulations . . . . . . . . . . .. . . . . . . . . 40
6 Conclusions . . . . 45
Bibliography. . . . 46
參考文獻 References
[1] D.N. de G. Allen and R.V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder, Quart. J. Mech. Appl. Math., 8, 129, 1955.
[2] F. Black and M. Scholes. The pricing of options and corporate liabilities. J. Political Economy, 81:637–659, 1973.
[3] G. Courtadon, A more accurate finite difference approximation for the valuation of options, J. Financial Economics Quant. Anal, 17:697–703, 1982.
[4] S.I. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6, No.2, 327–343, 1993.
[5] J. Hull and A. White, The pricing of options on assets with stochastic volatilities, The Journal of Finance, 42, Issue 2, 281-300, 1987.
[6] Y.K. Kwok, Mathematical models of financial derivatives, Springer-Verlag Singapore, Singapore, 1998.
[7] J.J.H. Miller and S. Wang, A new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem, IMA
J. Numer. Anal., 14, 257–276, 1994a.
[8] J.J.H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems, J. Comput. Phys., 115, No.1, 56–64, 1994b.
[9] L.C.G. Rogers and D. Tallay, Numerical Methods in Finance, Cambridge University Press, Cambridge, UK, 1997.
[10] E. Schwartz, The valuation of warrants: implementing a new approach, J. Financial Economics, 13, 79-93, 1977.
[11] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[12] S. Wang, A novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers, J. Comp. Phys., 134, 253–260, 1997.
[13] S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24, 699–720, 2004.
[14] S. Wang, X.Q. Yang and K.L. Teo, A power penalty method for a linear complementarity problem arising from American option valuation, J. Optimz. Theory
App., 129 (2), 227–257, 2006.
[15] P. Wilmott, J. Dewynne, and S. Howison. Option pricing: mathematical models and computation. Oxford Financial Press, Oxford, 1993.
[16] R. Zvan, P.A. Forsyth and K.R. Vetzal. Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math., 91(2), 199–218, 1998.
[17] Y. Achdou & O. Pironneau (2005) Computational Methods for Option Pricing, SIAM, Philadelphia.
[18] Angermann L. (2008) Discretization of the Black-Scholes operator with a natural left-hand side boundary condition, Far East J. Appl. Math., 30, 1–41.
[19] Angermann L. & Wang S. (2007) Convergence of a fitted finite volume method for European and American Option Valuation, Numerische Mathematik., 106, 1–40.
[20] J. Haslinger, M. Miettinen & P.D. Panagiotopoulos (1999) Finite element method for hemivariational inequalities, Kluwer, Dordrecht.
[21] A. Kufner (1985) Weighted Sobolev spaces, John Wiley & Sons Inc., New York.
[22] J. Franke, W. Harerdle & C. M. Hafner (2004) Statistics of Financial Market, 2nd edn, Springer, Berlin.
[23] C.-S. Huang, C.-H. Hung & S. Wang (2006) A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities, Computing., 77 (3), 297–320.
[24] C.-S. Huang, C.-H. Hung & S. Wang (2009) On Convergence of A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities, IMA J. Numerical Analysis, Advance Access, July 1, doi:10.1093/imanum/drp016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code