Responsive image
博碩士論文 etd-0622111-112956 詳細資訊
Title page for etd-0622111-112956
論文名稱
Title
錫石奈米顆粒之早期燒結及次微米粉末於水中的雷射碎化
Early stage sintering of nanosized SnO2 and laser fragmentation of sub-micron SnO2 powders in water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-06-22
關鍵字
Keywords
SnO2奈米顆粒、燒結、BET、PLAL碎化、微觀組織與光學性質
sintering, SnO2 nanoparticle, BET, PLAL fragmentation
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
在第一部分中,利用BET分析於800~1100 ℃等溫燒結的奈米二氧化錫粉末,取得粉末表面對於氮氣的吸脫附行為,再利用掃瞄式電子顯微鏡的結果做為燒結變化的佐證,由實驗結果得知,乾壓的粉末比表面積較大,由於粒徑屬於雙峰分佈(50~80 nm;200~500 nm) ,顆粒間有不規則管狀孔洞且分佈散亂,而其比表面積會隨著熱處理時間增加而變小,燒結過程中由顆粒粗化與重排影響甚大。利用粉末比表面積折半所需時間(t0.5)與溫度的關係,以及阿瑞尼氏方程式求出早期燒結粗化與聚合所需之活化能為75±5 kJ/mol,而奈米二氧化錫粉末於空氣中進行初期燒結並且聚簇轉動貼合的溫度下限約為735 ℃。

第二部份,利用脈衝雷射(Q-switch 模式,532 nm, 400mJ)剝熔蝕在水中碎裂分解次微米級錫石粉末,實驗參數為液面高度(5, 10, 15和20 mm)及時間(5, 15, 20和30 min)。532 nm雷射對水有些許吸收現象並有效碎化成粒徑約5 nm的奈米凝聚物,另外也重新凝聚生成具有α-PbO2結構的SnO2奈米顆粒,推測水中剝熔蝕錫石粉末造成能隙值減小的因素是綜合粒徑明顯變小、內應力明顯增加及晶格內部大量增加了鍵橋Sn-OH基等的效應。
Abstract
An onset coarsening-coalescence event based on the incubation time of cylindrical mesopore formation and a significant decrease of specific surface area by 50% relative to the dry pressed samples was determined by N2 adsorption-desorption hysteresis isotherm for cassiterite SnO2 nanoparticles (rutile-type structure with bimodal size distribution). In the temperature range of 800-1100oC, the nanoparticles underwent onset sintering coupled with coarsening-coalescence without appreciable polymorphic transformation or decomposition of SnO2. The apparent activation energy of such a rapid process for SnO2 nanoparticles was estimated as 75 ± 5 kJ/mol, respectively. The minimum temperature for sintering/coarsening/coalescence of the SnO2 nanoparticles is 735oC based on the extrapolation of steady specific surface area reduction rates to null.

PLA fragmentation of cassiterite SnO2 powder (rutile type, 20-50 nm in size) in water was conducted under Q-switch mode (532 nm, 400 mJ per pulse) having laser focal point fixed at 5, 10, 15 and 20 mm beneath the water level for an accumulation time of 5, 15, 20 and 30 min at 10 Hz. The 532 nm laser incidence suffered little water absorption and was effective to produce cassiterite nanocondensates as small as 5 nm in diameter and occasional nanocondensates of α-PbO2-type structure more or less in coalescence. The combined effects of nanosize, internal compressive stress and H+ and Sn2+ co-signature in the lattice may account for a lower minimum band gap.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖表目錄 viii
第一部份
壹、前言 1
貳、實驗流程 4
參、實驗步驟及方法 5
一、壓片 5
二、熱處理 5
三、BET/BJH量測 5
四、XRD量測 5
五、掃瞄式電子顯微鏡(SEM)觀察 5
六、穿透式電子顯微鏡(TEM)觀察 6
肆、實驗結果 7
一、BET比表面積 7
二、BJH氮氣吸脫附曲線 7
三、穿透式及掃瞄式電子顯微鏡觀察 7
四、XRD結果 8
伍、討論 9
一、吸脫附遲滯曲線及管狀孔洞 9
二、早期燒結粗化與聚合之活化能 9
三、奈米金屬二氧化物粉末燒結粗化與聚合之活化能比較 10
陸、結論 12
柒、參考文獻 13
第二部份
壹、前言 29
貳、實驗流程 31
參、實驗步驟及方法 32
一、配粉 32
二、雷射剝蝕 32
三、穿透式電子顯微鏡(TEM)觀察 32
四、XRD量測 32
五、UV–Vis吸收光譜分析 33
六、拉曼光譜分析(Raman) 33
七、霍式轉換紅外光譜分析(FTIR) 33
八、X光光電子能譜分析(XPS) 33
肆、實驗結果 34
一、X光繞射分析結果 34
二、UV–Vis吸收光譜分析結果 34
三、拉曼光譜分析(Raman)結果 34
四、霍式轉換紅外光譜分析(FTIR)結果 35
五、X光光電子能譜分析(XPS) 35
六、穿透式電子顯微鏡觀察 36
伍、討論 38
一、SnO2次微米粉末在水中雷射剝蝕碎化機制 38
二、在水中雷射剝蝕碎化產生之內應力 38
三、錫石於水中動態剝熔蝕環境的粒徑極限形狀與缺陷 39
四、能隙值之改變 39
五、缺陷化學 40
陸、結論 41
柒、參考文獻 42

參考文獻 References
柒、參考文獻
1. Brunauer, S., Emmett, P. H., Teller, E., “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60 (1938) 309-319.
2. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., “Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity,” Pure and Appl. Chem. 57 [4] (1985) 603-619.
3. Chen P.L., Chen I.W., “Sintering of fine oxide powders: II, Sintering Mechanisms,” J. Am. Ceram. Soc., 80 (1997) 637-645.
4. Liu, I.L., Shen, P., “Onset coarsening-coalescence kinetics of γ-type related Al2O3 nanoparticles: Implications to their assembly in a laser ablation process ,” J. Euro. Ceram Soc.29 (2009) 2235-2248.
5. Yeh, Y.C., Liu, I.H., Shen, P., “Onset coarsening/coalescence of cobalt oxides in the form of nanoplates versus equi-axed micron particles,” J. Euro. Ceram Soc. 30 (2010) 677-688.
6. 劉翊嫻,“含鈦的氧化鋅之相變化以及氧化鋅的初期粗化與聚簇”,國立中山大學97學年度碩士論文。
7. 陳姿蓉,“氧化鋅溶入及排出二氧化鈦造成之缺陷微觀組織以及奈米級二氧化鈦之早期燒結” ,國立中山大學95學年度碩士論文。
8. 盧哲瀚,“融入Zr4+之氧化鋁的析出行為以及二氧化鋯奈米粉末之早期燒結”,國立中山大學95學年度碩士論文。
9. Leite E.R., Cerri, J.A., Longo, E., Varela, J.A., Paskocima, C.A., “Sintering of ultrafine undoped SnO2 powder,” J. Euro. Ceram. Soc. 21 (2001) 669-675.
10. Poirier J.P. Creep of crystals – high-temperature deformation processes in metals, ceramics and minerals, Cambridge Univ. Press, Cambridge, 1985.
11. Song, X., Liu, D., Zhang, Y., Ding, Y., Li, M. “Grain growth kinetics of SnO2 nanoparticles synthesized by precipitation method,” J. Wuhan Univ. Tech.- Mater. Sci. Edition 2010, 25, 929-934.
柒、參考文獻
1. Saito K., Takatai K., Sakka T., Ogata Y., “Observation of the light emitting region produced by pulsed laser irradiation to a solid-liquid interface,” Appl. Surf. Sci., 197-198 (2002) 56-60.
2. Sajti C. L, Sattari R, Chichkov B. N., Barcikowski S, “Gram scale synthesis of pure ceramic nanoparticles by Laser Ablation in Liquid,” J. Phys. Chem. C 114 (2010) 2421-2427.
3. Kwasaki M., Nishimura N., “Laser-induced fragmentative decomposition of fine CuO powders in acetone: A highly productive pathway to Cu and Cu2O nanoparticles,” EOC Conference on Laser Ablation and Nanoparticle Generation in Liquids, Eneġelberġ, Switzerland (2010)
4. Ullmann M., Friedlander S. K., Schmidt-Ott A., “Nanoparticle formation by laser ablation,” Journal of Nanoparticle Research 4 (2002) 499-509.
5. 曾婉如,“磷灰石之酸蝕與SnO2-NiO之雷射融蝕凝聚”,國立中山大學95學年度博士論文。
6. Frȍhlich D., Kenklies R., Helbig R., “Band-gap assignment in SnO2 by two-photon spectroscopy” Phys. Rev. Lett. 41 (1978) 1750–1751.
7, Diéguez, A., Romano-Rodríguez, A., Vilà, A., Morante, J. R., “The complete Raman spectrum of nanometric SnO2 particles,” J. App. Phys. 90 (2001) 1550-1557.
8. Amalric-Popescu, D., Bozon-Verduraz, F., “ Infrared studies on SnO2 and Pd/SnO2, ” Catalysis Today 70 (2001) 139–154 and literature cited therein.
9. Wang G.W. “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci., 52 (2007) 648–698.
10. Barcikowski S., Devasa F.; Moldenhauer K. “Impact and structure of literature on nanoparticle generation by laser ablation in liquids,” J. Nanopart. Res., 11 (2009) 1883–1893.
11. Amendola V., Meneghetti M. “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys., 11 (2009) 3805–3821.
12. Sakamoto S., Fujutsuka M., Majima T. “Light as a construction tool of metal nanoparticles: synthesis and mechanism,” J. Photochem. Photobiol. C: Rev., 10 (2009) 33–56.
13. Semaltianos N.G. “Nanoparticles by laser ablation,” Crit. Rev. Solid State Mater. Sci., 35 (2010) 105–124.
14. Kamat P.V., Fluminani M., Hartland G.V., “Picosecond dynamics of silver nanoclusters: photoejection of electrons and fragmentation,” J. Phys. Chem. B, 102 (1998) 3123–3128.
15. Werner D., Hashimoto S., “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115 (2011) 5063-5072.
16. Takami A., Kurita H., Koda S., “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B, 103 (1999) 1226–1232.
17. Tseng W.J., Shen P., Chen S.Y., “Defect generation of rutile-type SnO2 nanocondensates: Imperfect oriented attachment and phase transformation,” J. Solid State Chem. 179 (2006) 1237-1246.
18. Haines, J., Léġer, J. M., “X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: Relationships between structure types and implications for other rutile-type dioxides,” Phys. Rev. B, 55 (1997) 11144-11154.
19. Liu, L., “Synthesis of a new high-pressure phase of tin dioxide and some geophysical implications, ” Phys. Earth Planet. Inter. 9 (1974) 338-343.
20. Suito, K., Kawai, N., Masuda, Y., “High pressure synthesis of orthorhombic SnO2,” Mater. Res. Bull. 10 (1975) 677-680.
21. Andersson S., “The crystal structure of Ti5O9,” Acta Chem. Scand. 14 (1960) 1161-1172.
22. Bursill L.A., Hyde, B.G., Philp, D.K., “New crystallographic shear families derived from the rutile structure, and the possibility of continuous ordered solid solution,” Phil. Mag. 23 (1970) 1501–1513.
23. Bursill L.A., Hyde B.G., “Crystal structure in the {1 2} family of higher titanium oxides TinO2n-1,” Acta Crystallogr. Sect.B 27 (1971) 210-215.
24. Bursill L.A., Hyde B.G., “Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics,” Prog. Solid State Chem. 7 (1972) 177-182.
25. SØrensen O. T. (Ed.), Non- stoichiometric Oxides, Academic Press, New York, (1981) 28-31 and 64-65.
26. Yang K.C., Shen P., Gan D., “Defect microstructures of TiO2 rutile due to Zr4+ dissolution and expulsion,” J. Solid State Chem. 179 (2006) 3478-3483.
27. Yang K.C., Shen P., Gan D., “On the reorientation of ZrTiO4 particles during reactive sintering of TiO2-ZrO2,” J. Eur. Ceram. Soc. 28 (2008) 1169-1176.
28. Chen S.Y., Shen P., “Laser ablation condensation and transformation of baddeleyite-type related TiO2, ” Japanese Journal of Applied Physics 43 (2004) 1519-1524.
29. Kr ger F.A., Vink H.J. “Relations between the concentrations of imperfections in crystalline solids,” Solid State Phys. 3 (1956) 307-435.
30. Kílíç C., Zunger A., “Origin of coexistence of conductivity and transparency in SnO2,” Phys. Rev. Lett. 88 (2002) 095501-1-4.
31. Howie R.A., Moser W., “Structure of tin(II) "hydroxide" and lead(II) "hydroxide",” Nature 219 (1968) 372-373.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.196.217
論文開放下載的時間是 校外不公開

Your IP address is 18.117.196.217
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code