Responsive image
博碩士論文 etd-0622111-133838 詳細資訊
Title page for etd-0622111-133838
論文名稱
Title
以功能性奈米粒子檢測環境樣品與生物分子
Using functionalized gold nanoparticles to determinate environmental samples and biomolecules
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-17
繳交日期
Date of Submission
2011-06-22
關鍵字
Keywords
磷苯二醛、三(2-羰基乙基)磷鹽酸鹽、同型胱胺酸、抗壞血酸、同半胱胺酸、氟界面活性劑-金奈米粒子、氯化鉻、重鉻酸鉀、5-硫基-(2-硝基苯甲酸)、金奈米粒子
o-Phthaldialdehyde (OPA), homocysteine(HCys), homocystine(diHcys), FSN-AuNPs, Tris(2-carboxyethyl)phosphine (TCEP), 5-thio-(2-nitrobenzoic acid) (TNBA), K2Cr2O7, CrCl3, gold nanoparticles (AuNPs), ascorbic acid
統計
Statistics
本論文已被瀏覽 5682 次,被下載 1639
The thesis/dissertation has been browsed 5682 times, has been downloaded 1639 times.
中文摘要
本篇論文利用修飾不同分子的功能性金奈米粒子(Gold nanoparticles, AuNPs)做為感測器及濃縮萃取試劑,偵測重金屬離子及生物分子。
一、 以修飾5-硫基-(2-硝基苯甲酸)之金奈米粒子之比色試驗做為六價鉻感測器:本篇研究利用5-Thio-(2-nitrobenzoic acid)修飾於金奈米粒子表面(5-Thio-(2-nitrobenzoic acid)-capped gold nanoparticles, TNBA-AuNPs),做為移除劑與感測器,於Cr(III)存在下對Cr(VI)開發出一套操作簡單、容易分離且具備選擇性與靈敏度的偵測方法。TNBA-AuNPs於Cr(Ⅵ)水溶液中,因TNBA-AuNPs的carboxyl與帶負電的Cr(VI)之間會有很強的靜電斥力,使得TNBA-AuNPs以分散形式呈現;而於Cr(Ⅲ)水溶液中,TNBA-AuNPs表面的Carboxyl和Nitryl官能基會選擇性與Cr(III)進行配位,促使TNBA-AuNPs聚集。根據此特性,TNBA-AuNPs可有效吸附Cr(Ⅲ)將其移除,移除率大於90%。因此,當溶液中含有TNBA-AuNPs、Cr(Ⅲ)和Cr(Ⅵ),可藉由離心機將Cr(Ⅲ)和Cr(Ⅵ)分離於沉澱物與上清液中,此時,上清液可使用還原劑—維他命C(Ascorbic acid, AA)將Cr(Ⅵ)還原成Cr(Ⅲ),再利用TNBA-AuNPs的比色試驗(Colorimetry)對Cr(VI)進行定量分析。本篇研究對於偵測Cr(Ⅵ)與其他重金屬離子比較,選擇性高達1000倍,Cr(Ⅵ)最低可偵測的濃度(Minimum detectable concentration﹐MDC)為1 μM。此外,TNBA-AuNPs也可做為感應耦合電漿質譜分析(Inductively coupled plasma mass spectrometry, ICP-MS)分析鉻物種的前處理試劑。最後,本篇研究也證實此方法可成功分析飲用水、自來水、湖水和河水中的Cr(Ⅵ)含量。
二、 結合氟界面活性劑的金奈米粒子濃縮萃取和鄰苯二醛之螢光衍生法來檢測血漿中同半胱胺酸的總量、自由量、氧化態和蛋白質上的吸附量:此部分的研究中,使用三(2-羰基乙基)磷鹽酸鹽(Tris(2-carboxyethyl)phosphine, TCEP)做為雙硫鍵還原試劑、修飾氟界面活性劑的金奈米粒子(FSN-capped gold nanoparticles﹐FSN-AuNPs)為濃縮萃取的探針及磷苯二醛(o-Phthaldialdehyde, OPA)為衍生試劑,結合三者開發一套操作簡單、具備選擇性與靈敏度的系統來檢測人體血漿中同半胱胺酸(Homocysteine﹐HCys)的總量、自由量、氧化態及蛋白質上的吸附量。TCEP用來將蛋白質上及氧化態HCys的雙硫鍵還原成硫醇基;修飾FSN之AuNPs可穩定分散於高鹽類溶液中且無非特異性吸附現象,因此,可以從複雜的基質樣品中萃取HCys;而HCys不需任何親核試劑(Nucleophile)即可與OPA進行衍生反應。綜合以上特性,本篇研究系統對HCys與同型胱胺酸(Homocystine, HCys-HCys, diHCys)的選擇性高於其他胺基硫醇的100倍。在最適化條件下,HCys及diHCys的偵測極限(訊號/雜訊=3)分別為4.4 nM及4.6 nM,與其他感測器比較,本篇研究系統能將偵測HCys時的靈敏度提升3-300倍。而在檢測人體血漿中不同型態的HCys時,則先藉由TCEP進行還原反應,最後,成功應用於檢測人體血漿中HCys的總量、自由量、氧化態及蛋白質上的吸附量。因此,本篇研究系統為首次成功應用於檢測人體血漿中不同型態的HCys,且HCys的偵測極限皆低於其他感測器。
Abstract
一、Role of 5-thio-(2-nitrobenzoic acid)-capped gold nanoparticles in the sensing of chromium(VI): remover and sensor
This study describes a simple, rapid method for sensing Cr(VI) using 5-thio-(2-nitrobenzoic acid) modified gold nanoparticles (TNBA-AuNPs) as a remover for Cr(III) and as a sensor for Cr(VI). We discovered that TNBA-AuNPs were dispersed in the presence of Cr(VI), whereas Cr(III) induced the aggregation of TNBA-AuNPs. Due to this phenomenon, TNBA-AuNPs can be used as a sorbent material for the removal of > 90% Cr(III), without removing Cr(VI). After centrifuging a solution containing Cr(III), Cr(VI), and TNBA-AuNPs, Cr(III) and Cr(VI) were separately present in the precipitate and supernatant. In other words, TNBA-AuNPs are capable of separating a mixture of Cr(III) and Cr(VI). The addition of ascorbic acid to the supernatant resulted in a reduction of Cr(VI) to Cr(III), driving the aggregation of TNBA-AuNPs. The selectivity of this approach is more than 1000-fold for Cr(VI) over other metal ions. The minimum detectable concentration of Cr(VI) was 1 μM using this approach. Inductively coupled plasma mass spectrometry provided an alternative for the quantification of Cr(III) and Cr(VI) after a mixture of Cr(III) and Cr(VI) had been separated by TNBA-AuNPs. The applicability of this approach was validated through the analysis of Cr(VI) in drinking and tap water.
二、Fluorescent Sensing of Total, Protein-bound, Free, and Oxidized Homocysteine in Plasma through the Combination of Tris(2-carboxyethyl)Phosphine Reduction, Fluorosurfactant-Capped Gold Nanoparticles Extraction, and o-Phthaldialdehyde Derivatization
This study reports a simple, selective, and sensitive method for fluorescent detection of total, protein-bound, free, and oxidized homocysteine (HCys) using tris(2-carboxyethyl)phosphine (TCEP) as a reducing agent, fluorosurfactant-capped gold nanoparticles (FSN-AuNP) as a preconcentrating probe, and o-Phthaldialdehyde (OPA) as a derivatizing agent. TCEP was used to reduce the disulfide bonds of protein-bound and oxidized HCys. FSN-AuNPs were capable of extracting HCys from a complicated complex because the FSN capping layer can stabilize the AuNPs in a high-salt solution and inhibit non-specific adsorption. HCys was selectively derivatized with OPA in the absence of a nucleophile. By taking advantage of these features, the selectivity of the proposed system is greater than 100-fold for HCys and homocystine (HCys-HCys disulfide; diHCys) compared to any aminothiols. The limits of detection (LODs) for HCys and diHCys were 4.4 and 4.6 nM, respectively. Compared to other sensors, the proposed system provides an approximately 3-300-fold improvement in the detection of HCys. Different forms of plasma HCys were determined by varying the order of disulfide reduction with TCEP. The proposed system was successfully applied to determine the total, protein-bound, free, and oxidized HCys in plasma. To the best of our knowledge, the proposed system not only provides the first method for detecting various forms of plasma HCys, but also has the lowest LOD value for HCys when compared to other sensors.
目次 Table of Contents
摘要 i
目錄 vi
圖目錄 viii
表目錄 x
縮寫表 xi
第一章、以修飾5-硫基-(2-硝基苯甲酸)之金奈米粒子之比色試驗做為六價鉻感測器
一、前言 1
二、藥品與方法 5
2.1藥品與溶液配製 5
2.2儀器裝置 7
2.3 TNBA-AuNPs之合成方法 9
2.4樣品溶液配製 10
2.5真實樣品之配製與偵測11
三、結果與討論 12
3.1 TNBA-AuNPs做為Cr(VI)的感測器 12
3.2 TNBA-AuNPs做為Cr(III)的移除劑 19
3.3選擇性、靈敏度及應用 24
四、結論 39
五、參考文獻 40
第二章、結合氟界面活性劑的金奈米粒子濃縮萃取和鄰苯二醛之螢光衍生法來檢測血漿中同半胱胺酸的總量、自由量、氧化態和蛋白質上的吸附量
一、前言43
二、藥品與方法 48
2.1藥品與溶液配製 48
2.2儀器裝置 51
2.3 FSN-AuNPs之合成方法 53
2.4萃取流程 54
2.5分析人體血漿中HCys的總量、自由量、氧化態與蛋白質上的吸附量…55
(一)HCys總量、蛋白質上吸附量及自由量的檢測 55
(二)氧化態的HCys含量檢測 56
2.6 螢光偏極化免疫法 58
三、結果與討論 59
3.1 利用FNS-AuPs萃取diHCys 59
3.2還原試劑、FNS-AuNPs濃度與反應時間的探討 63
3.3選擇性與靈敏度 66
3.4人體血漿中不同HCys型態的定量分析 74
四、結論 81
五、參考文獻 82
參考文獻 References
一、 以修飾5-硫基-(2-硝基苯甲酸)之金奈米粒子之比色試驗做為六價鉻感測器:
(1)Yilmaz, S. ; Ture, M. ; Sadikoglu, M. ; Duran, A. “Determination of total Cr in wastewaters of Cr electroplating factories in the I.organize industry region (Kayseri, Turkey) by ICP-AES” Environ. Monit. Assess. 2010, 167, 235-242.
(2)Velma,V.; Vutukuru, S. S.; Tchounwou, P. B. “Ecotoxicology of hexavalent chromium in freshwater fish: A critical review” Rev Environ Health. 2009, 24, 129-145.
(3)Broadhurst, C. L.; Domenico, P. “Clinical studies on chromium picolinate supplementation in diabetes mellitus—A Review” Diabetes Technol. Ther. 2006, 8, 677-687.
(4)Ashley, K.; Howe, A. M.; Demangec, M.; Nygren, O. “Sampling and analysis considerations for the determination of hexavalent chromium in workplace air” J. Environ. Monit. 2003, 5, 707-716.
(5)Chwastowska, J.; Skwara, W.; Sterli´nska, E.; Pszonicki, L. “Speciation of chromium in mineral waters and salinas by solid-phase extraction and graphite furnace atomic absorption spectrometry” Talanta 2005, 66, 1345-1349.
(6)Balasubramanian, S.; Pugalenthi, V. “Determination of total chromium in tannery waste water by inductively coupled plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV–visible spectrophotometric methods” Talanta 1999, 50, 457-467.
(7)Wang ,H.-J.; Du, X.-M.; Wang, M.; Wang, T.-C.; Ou-Yanga, H.; Wang ,B.; Zhu, M.-T.; Wang, Y.; Jia, G.; Feng, W.-Y. “Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers” Talanta 2010, 81, 1856-1860.
(8)Turyan, I.; Mandler, D. “Selective determination of Cr(VI) by a self-assembled monolayer-based electrode” Anal. Chem. 1997, 69, 894-897.
(9)Sarkar, M.; Banthia, S.; Samanta, A. “A highly selective ‘off–on’ fluorescence chemosensor for Cr(III) ” Tetrahedron Lett. 2006, 47, 7575-7578.
(10)Zhou, Z.; Yu, M.; Yang, H.; Huang, K.; Li, F.; Yi, T.; Huang, C. “FRET-based sensor for imaging chromium(III) in living cells” Chem. Commun. 2008, 3387-3389
(11)Huang, K.; Yang, H.; Zhou, Z.; Yu, M.; Li, F.; Gao, X.; Yi, T.; Huang, C.“Multisignal chemosensor for Cr3+ and its application in bioimaging” Org. Lett. 2008, 10, 2557-2560.
(12)Mao, J.; He, Q.; Liu, W. “An “off–on” fluorescence probe for chromium(III) ion determination in aqueous solution” Anal. Bioanal. Chem. 2010, 396, 1197-1203.
(13)Sasaki, K.; Oguma, S.; Namiki, Y.; Ohmura, N. “Monoclonal antibody to trivalent chromium chelate complex and Its application to measurement of the total chromium concentration” Anal. Chem. 2009, 81, 4005-4009.
(14)Wang, L.; Wang, L.; Xia, T.; Dong, L.; Bian, G.; Chen, H. “Direct fluorescence quantification of chromium(VI) in watewater with organic nanoparticles sensor” Anal. Sci. 2004, 20, 1013-1017.
(15)Wang, L.; Xia, T.; Liu, J.; Wang, L.; Chen, H.; Dong, L.; Bian, G. “Preparation and application of a novel core/shell organic nanoparticle as a fluorescence probe in the selective determination of Cr(VI) ” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2005, 62, 565-569.
(16)Zamani, H. A.; Rajabzadeh, G.; Ganjali, M. R. “Highly selective and sensitive chromium(III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore” Sens. Actuator B-Chem. 2006, 119, 41-46.
(17)Choi, Y. W.; Minoura, N.; Moon, S. H. “Potentiometric Cr(VI) selective electrode based on novel ionophore-immobilized PVC membranes” Talanta 2005, 66, 1254-1263.
(18) Daniel, M. C.; Astruc, D. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology” Chem. Rev. 2004, 104, 293-346.
(19)Fahnestock, K. J.; Manesse, M.; McIlwee, H. A.; Schauer, C. L.; Boukherroub, R.; Szunerits, S. “Selective detection of hexachromium ions by localized surface plasmon resonance measurements using gold nanoparticles/chitosan composite interfaces” Analyst 2009, 134, 881-886.
(20)Kapakoglou, N. I.; Giokas, D. L.; Tsogas, G. Z.; Ladavos, A. K.; Vlessidis, A. G. “Development of a chromium speciation probe based on morphology-dependent aggregation of polymerized vesicle-functionalized gold nanoparticles” Analyst 2009, 134, 2475-2483.
(21)Wu, T.; Liu, C.; Tan, K. J.; Hu, P. P.; Huang, C. Z. “Highly selective light scattering imaging of chromium (III) in living cells with silver nanoparticles” Anal. Bioanal. Chem. 2010, 397, 1273-1279.
(22)Dang, Y.-Q.; Li, H.-W.; Wang, B.; Li, L.; Wu, Y. “Selective detection of trace Cr3+ in aqueous solution by using 5,5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles” ACS Appl. Mater. Interfaces 2009, 7, 1533-1538.
(23)Hill, H. D.; Mirkin, C. A. “The bio-barcode assay for the detection of protein andnucleic acid targets using DTT-induced ligand exchange” Nat. Protoc. 2006, 1, 324-336.
(24)Chang, C.-W.; Tseng, W.-L. “Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma” Anal. Chem. 2010, 82, 2696-2702.
(25)Huang C.-C.; Chang, H.-T. “Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution” Anal. Chem. 2006, 78, 8332-8338.
(25)Xu, X.-R.; Li, H.-B.; Li, X.-Y.; Gu, J.-D. “Reduction of hexavalent chromium by ascorbic acid in aqueous solutions” Chemosphere 2004, 57, 609–613.
(26)Yang, J. W.; Tang, Z. S.; Guo, R. F.; Chen, S. Q. “Soil surface catalysis of Cr(VI) reduction by citric acid” Environ. Prog. 2008, 27, 302-307.
(27)Vassileva, E.; Hadjiivanov, K.; Stoychev, T.; Daiev.C. “Chromium speciation analysis by solid-phase extraction on a high surface area TiO2” Analyst 2000, 125, 693-698.
(29)Liang, P.; Shi, T.; Lu, H.; Jiang, Z.; Hu, B. “Speciation of Cr(III) and Cr(VI) by nanometer titanium dioxide micro-column and inductively coupled plasma atomic emission spectrometry” Spectroc. Acta Pt. B-Molec. Biomolec. Spectr. 2003, 58, 1709-1714.
二、 結合氟界面活性劑的金奈米粒子濃縮萃取和鄰苯二醛之螢光衍生法來檢測血漿中同半胱胺酸的總量、自由量、氧化態和蛋白質上的吸附量:
(1)Ueland, P. M. “Homocysteine species as components of plasma redox thiolstatus”Clin. Chem. 1995, 41, 340-342.
(2)Wierzbicki, A. S. “Homocysteine and cardiovascular disease: a review of the evidence” Diab. Vasc. Dis. Res. 2007, 4, 143-149.
(3)Guttormsen, A. B.; Ueland, P. M.; Svarstad, E.; Refsum, H. “Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure” Kidney Int. 1997, 52, 495-502.
(4)Mansoor, M. A.; Ueland, P. M.; Svardal, A. M. “Redox status and protein binding of plasma homocysteine and other aminothiols in patients with hyperhomocysteinemia due to cobalamin deficiency” Am. J. Clin. Nutr. 1994, 59, 631-635.
(5)Kang, S. S.; Wong, P. W.; Curley, K. “The effect fo D-Penicillamine on protein-bound homocyst(e)ine in homocystinurics” Pediatr. Res. 1982, 16, 370-372.
(6)Van Oijen, M. G.; Claessen, B. E.; Clappers, N.; Van Schaik, A.; Laheij, R. J.; Jansen, J. B.; Peters, W. H.; Verheugt, F. W. “Prognostic value of free plasma homocysteine levels in patients hospitalized with acute coronary syndrome” Am. J. Cardiol. 2008, 102, 135-139.
(7)Sjöberg, B.; Anderstam, B.; Suliman, M.; Alvestrand, A. “Plasma reduced and HCys other aminothiol concentrations in patients with CKD” Am. J. Kidney Dis. 2006, 47, 60-71.
(8)Chambers, J. C.; Ueland, P. M.; Wright, M.; Doré, C. J.; Refsum, H.; Kooner, J. S.“Investigation of relationship between reduced, oxidized, and protein-bound homocysteine and vascular endothelial function in healthy human subjects” Circ.Res. 2001, 89, 187-192.
(9)McMenamina, M. E.; Himmelfarbb, J.; Nolin, T. D. “Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection” J. Chromatogr. B 2009, 877, 3274-3281.
(10)Kus’mierek, K.; Chwatkob, G.; Głowacki, R.; Bald, E. “Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection” J. Chromatogr. B 2009, 877, 3300-3308.
(11)Carlucci, F.; Tabucchi, A. “Capillary electrophoresis in the evaluation of aminothiols in body fluids” J. Chromatogr. B 2009, 877, 3347-3357.
(12)Bayle, C.; Causse, E.; Couderc, F. “Determination of aminothiols in body fluids, cells, and tissues by capillary electrophoresis” Electrophoresis 2004, 25, 1457-1472.
(13)Williams, R. H.; Maggiore,J. K.; Reynolds, R. D.; Helgason, C. M. “Novel approach for the determination of the redox status of homocysteine and other aminothiols in plasma from healthy subjects and patients with ischemic stroke” Clin. Chem. 2001, 47, 1031-1039.
(14)Uji, Y.; Motomiya, Y.; Hanyu, N.; Ukaji, F.; Okabe, H. “Protein-bound homocystamide measured in human plasma by HPLC” Clin. Chem. 2002, 48, 941-944.
(15)Carducci, C.; Birarelli, M.; Nola, M.; Antonozzi, I. “Automated high-performance liquid chromatographic method for the determination of homocysteine in plasma samples” J. Chromatogr. A 1999, 846, 93-100.
(16)Chang, H.-J.; Tseng, W.-L. “Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma” Anal. Chem. 2010, 82, 2696-2702.
(17)Carru, C.; Deiana, L.; Sotgia, S.; Pes, G. M.; Zinellu, A. “Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis” Electrophoresis 2004, 25, 882-889.
(18)Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. “Fluorescent and colorimetric probes for detection of thiols” Chem. Soc. Rev. 2010, 39, 2120-2135.
(19)Rusin, O.; Luce, N. N. S.; Agbaria, R. A.; Escobedo, J. O.; Jiang, S.; Warner, I. M.; Dawan, F. B.; Lian, K.; Strongin, R. M. “Visual detection of cysteine and homocysteine” J. Am. Chem. Soc. 2004, 126, 438-439.
(20)Zhang, R.; Yu, X.; Ye, Z.; Wang, G.; Zhang, W.; Yuan, J. “Turn-on luminescent probe for cysteine/homocysteine based on a ruthenium(II) complex” Inorg. Chem. 2010, 49, 7898-7903.
(21)Chen, X.; Ko, S.-K.; Kim, M. J.; Shin, I.; Yoon, J. “A thiol-specific fluorescent probe and its application for bioimaging” Chem. Commun. 2010, 46, 2751-2753.
(22)Zhang, D.; Zhang, M.; Liu, Z.; Yu, M.; Li, F.; Yi, T.; Huang, C. “Highly selective colorimetric sensor for cysteine and homocysteine based on azo derivatives” Tetrahedron Lett. 2006, 47, 7093-7096.
(23)Zhang, M.; Yu, M.; Li, F.; Zhu, M.; Li, M.; Gao, Y.; Li, L.; Liu, Z.; Zhang, J.; Zhang, D.; Yi, T.; Huang, C. “A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging” J. Am. Chem. Soc. 2007, 129, 10322-10323.
(24)Wei, W.; Liang, X.; Hu, G.; Guo, Y.; Shao, S. “A highly selective colorimetric probe based on 2,2′,2″-trisindolylmethene for cysteine/homocysteine” Tetrahedron Lett. 2011, 52, 1422-1425.
(25)Shiu, H.-Y.; Chong, H.-C.; Leung, Y.-C.; Wong, M.-K.; Che, C.-M. “A highly selective FRET-based fluorescent probe for detection of cysteine and homocysteine” Chem. Eur. J. 2010, 16, 3308-3313.
(26)Han, B.; Wang, E. “Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids” Biosens. Bioelectron. 2011, 26, 2585-2589.
(27)Zhang, Y.; Li,Y.; Yan, X.-P. “Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids”Anal. Chem. 2009, 81, 5001-5007.
(28)Lu, C.; Zu, Y.; Yam, V. W. “Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles” Anal. Chem. 2007, 79, 666-672.
(28)Huang, C.-C.; Tseng, W.-L. “Role of Fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone remover and sensor” Anal. Chem. 2008, 80, 6345-6350.
(30)Lin, J.-H.; Chang, C.-W.; Wu, Z.-H.; Tseng, W.-L. “Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles” Anal. Chem. 2010, 82, 8775-8779.
(31)Tang, Y.; Yan, J.; Zhou, X.; Fu, Y.; Mao, B. “An STM study on nonionic fluorosurfactant Zonyl FSN self-assembly on Au(111): large domains, few defects, and good stability” Langmuir 2008, 24, 13245-13249
(32)Li, F.; Zu, Y. “Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2¢-bipyridine)ruthenium(II)/tri-n-propylamine system: lower oxidation potential and higher emission intensity” Anal. Chem. 2004, 76, 1768-1772.
(33)Lu, C.; Zu, Y. “Specific detection of cysteine and homocysteine: recognizing onemethylene difference using fluorosurfactant-capped gold nanoparticles” Chem. Commun. 2007, 3871-3873.
(34)Mukai, Y.; Togawa, T.; Suzuki, T.; Ohata,K.; Tanabe, S. “Determination of homocysteine thiolactone and homocysteine in cell cultures using high-performance liquid chromatography with fluorescence detection” J. Chromatogr. B 2002, 767, 263-268.
(35)Togawa, T.; Mukai, Y.; Ohata, K.; Suzuki, T.; Tanabe, S. “Measurement of homocysteine thiolactone hydrolase activity using high-performance liquid chromatography with fluorescence detection and polymorphisms of paraoxonase in normal human serum” J. Chromatogr. B 2005, 819, 67-72.
(36)Chwatko, G.; Jakubowski, H. “Urinary excretion of homocysteine-thiolactone in humans” Clin. Chem. 2005, 51, 408-415.
(37)Jakubowski, H. “New method for the determination of protein N-linked homocysteine” Anal. Biochem. 2008, 380, 257-261.
(38)Głowacki, R.; Borowczyk, K.; Bald, E.; Jakubowski, H. “On-column derivatization with o-phthaldialdehyde for fast determination of homocysteine in human urine” Anal. Bioanal. Chem. 2010, 396, 2363-2366.
(39)Zuman, P. “Reactions of Orthophthalaldehyde with Nucleophiles” Chem. Rev. 2004, 104, 3217-3238.
(40)Lin, J.-H.; Chang, C.-W.; Tseng, W.-L. “Fluorescent sensing of homocysteine in urine: Using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde” Analyst 2010, 135, 104-110.
(41)Lee, P. C.; Meisel, D. “Adsorption and surface-enhanced Raman of dyes on silver and gold sols, ” J. Phys. Chem.1982, 86, 3391-3395.
(42)Huang, C.-C.; Chen, C.-T.; Shiang, Y.-C.; Lin, Z.-H.;Chang, H.-T. “Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli” Anal. Chem. 2009, 81, 875-882.
(43)Garcia, A. J.; Apitz-Castro, R. “Plasma total homocysteine quantification: an improvement of the classical high-performance liquid chromatographic method with fluorescence detection of the thiol-SBD derivatives” J. Chromatogr. B 2002, 779, 359–363.
(44)Refsum, H.; Smith, A. D.; Ueland, P. M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; Scott, J. M. “Facts and recommendations in tHcy determinations and assessment” Clin. Chem. 2004, 50, 3–32.
(45)Chen, S.-J.; Chang, H.-T. “Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation” Anal. Chem. 2004, 76, 3727-3734.
(46)Donnelly, J. G.; Pronovost, C. “Evaluation of the Abbott IMxTM fluorescence polarization immunoassay and the Bio-Rad enzyme immunoassay for homocysteine: comparison with high-performance liquid chromatography”Ann. Clin. Biochem. 2000, 37, 194-198.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code