Responsive image
博碩士論文 etd-0622111-172051 詳細資訊
Title page for etd-0622111-172051
論文名稱
Title
非晶質不含或含鋅矽石粉末之初期燒結與水中脈衝雷射碎化
Incipient-stage sintering and PLAL fragmentation of amorphous silica with optional Zn content
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-06-22
關鍵字
Keywords
非晶二氧化矽、非晶矽酸鋅、早期燒結、比表面積、雷射剝蝕、微結構和光特性
BET, amorphous Zn2SiO4, early sintering, PLAL fragmentation, microstucture and optical property, amorphous SiO2
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
第一部分
本實驗比較非晶質的二氧化矽和矽酸鋅奈米顆粒經乾壓之後等溫熱處理以至於比表面積收縮的初期燒結現象,利用BET氮氣量測得到BJH吸脫附滯留洄圈曲線,求得比表面積、孔洞大小並用阿瑞尼士定律求得活化能。所使用的40nm二氧化矽顆粒在1300oC左右發生燒結現象,但燒結度不佳,容易碎裂,若加入1wt% PVA(Poly-vinyl alcohol)乾壓助結合劑,則燒結能進行的溫度下降至1150oC~ 1300oC之間。在此溫度範圍內隨時間增加BJH滯洄曲線由第IV類型H2型態變化到H1型態,但過程中顆粒並沒有發生相變化,在熱處理1300oC-40分鐘後才出現微量的低溫相鱗石英,而熱處理1300oC-60分鐘後出現低溫相方石英。至於非晶矽酸鋅奈米粉末的乾壓餅在 600oC~900oC之間就可明顯的燒結,而且隨時間增加BJH滯洄曲線由第IV類型的H4變成H1型態,在熱處理600oC產生六方體的氧化鋅,700oC則產生β相的矽酸鋅。以上兩種奈米粉末在初期燒結過程中,比表面積大幅下降,並且形成管狀孔洞,隨溫度、時間的增加,孔洞變大。40nm級二氧化矽根據比表面積變成30%所需時間(t0.3)求得的活化能為177+31.5kJ/mol;而10~20nm奈米級的矽酸鋅則根據t0.5求得105+3.8kJ/mol,顯示共價鍵性較強的二氧化矽初期燒結所需的活化能比矽酸鋅來的大,其他影響初期燒結活化能的因素還有顆粒大小造成轉動貼合和表面擴散的難易、相變化造成晶界擴散和晶格擴散的改變等原因。

第二部分
本實驗研究非晶質二氧化矽奈米顆粒在去離子水和飽和食鹽水中經532nm 400mJ Nd-YAG脈衝雷射剝蝕模擬閃電撞擊海水,產生高溫高壓的環境使海水中的礦物產生碎裂或相變化,我們利用不同的參數 例如:液面高度、剝蝕時間、粉末重量,達到最佳的碎化(fragmentation)效果,利用穿透式電子顯微鏡的觀察,發現碎化後的顆粒形貌改變成多邊形,但並沒有明顯結晶,其結構仍然十分鬆散,除此之外上有新生的類似蛋白石(Opal 化學式 SiO2˙nH2O)的矽水合物,其造成UV-vis的
吸收波長在200nm左右,而此矽水合物在真空電子束(200kV)的照射下快速相變化成約5nm晶粒,推測是由於電子束熱的作用,造成水分子快速蒸發且熱能造成相變化,所對應出的晶粒為α相麟石英和β相方石英。至於去離子水和飽和食鹽水中雷射剝蝕非晶質二氧化矽顆粒的差異,主要是在TEM觀察下,前者容易出現β相的方石英;後者易出現α相的麟石英。比較第一部分初始燒結一段時間之後才出現相變化的靜態情況,使用脈衝雷射於水中背景輻射熱影響,時間約為20min~ 30min的動態情況下,也能使非晶SiO2顆粒同時產生類似的相變化。
Abstract
An onset coarsening-coalescence event based on the incubation time of cylindrical mesopore formation and a significant decrease of specific surface area by a certain fraction relative to the dry pressed samples was determined by N2 adsorption-desorption hysteresis isotherm for amorphous SiO2 nanoparticles (ca. 40 nm in size). In the temperature range of 1150-1300oC, the nanoparticles with binder (PVA) additive underwent onset sintering coupled with coarsening-coalescence without appreciable crystallization. The apparent activation energy of such a rapid process for amorphous SiO2 nanoparticles was estimated as 177 ± 31.5 kJ/mol, based on 30% change of specific surface area. As a comparison, in much lower temperature range of 600-900oC, the amorphous Zn2SiO4 nanoparticles underwent onset sintering coupled with coarsening-coalescence accompanied more or less with the formation of ZnO The apparent activation energy of such a rapid process for a amorphous Zn2SiO4 was estimated as 105 ± 3.8 kJ/mol based on 50% change of specific surface area. The minimum temperatures for sintering/coarsening/coalescence of the amorphous SiO2 and Zn2SiO4 are 1120℃ and 635oC, respectively based on the extrapolation of steady specific surface area reduction rates to null.

PLA fragmentation of amorphous and nearly spherical SiO2 nanoparticles (40 nm in size) in water (i.e. PLAL process) with optional NaCl addition was conducted under Q-switch mode (532 nm, 400 mJ per pulse) having laser focal point fixed at ca. 10 mm beneath the water level for an accumulation time of 20 and 30 min at 10 Hz. The 532 nm laser incidence suffered little water absorption and was effective to produce irregular shaped amorphous nanocondensates as small as 10nm~20nm in diameter with accompanied change of medium range order (MRO) as indicated by single rather than two broad x-ray diffractions at low 2theta angle. Whereas the Na+ uptake in the amorphous silica from the salty water account for a lower wave number of FTIR bands. The combined effects of nanosize, MRO change and H+ -signature may cause a lower minimum band gap of the amorphous products (analogous to opal-A) which become partially crystallized as β-cristobalite (analogous to opal-CT) with additional α-tridymite when Na+ is present.
目次 Table of Contents
目錄 頁次
第一部分
論文審定書 i
致謝 ii
摘要 iii
目錄 vii
表索引 viii
圖索引 viii
附錄索引 x
壹、前言 1
貳、實驗步驟及方法 1
2-1.壓餅 4
2-2.熱處理 5
2-3.BET量測 5
2-4.X-光繞射分析 5
2-5.掃瞄式電子顯微鏡 6
2-6.穿透式電子顯微鏡 6
2-7.拉曼光譜 6
2-8.霍式轉換紅外光譜儀 6
參、實驗結果
3-1-1.熱處理 7
3-1-2.BET量測 7
3-1-3.掃瞄式電子顯微鏡 7
3-1-4.X-光繞射分析 8
3-1-5.拉曼光譜 8
3-1-6.霍式轉換紅外光譜儀 8
3-1-7.穿透式電子顯微鏡 9
3-2-1.熱處理 9
3-2-2.BET量測 9
3-2-3.掃瞄式電子顯微鏡 9
3-2-4.X-光繞射分析 9
3-2-5.穿透式電子顯微鏡 10
肆、討論
4-1.熱處理造成非晶質二氧化矽的結構變化 10
4-2.熱處理造成的矽酸鋅相變化 11
4-3.非晶質矽酸鋅與二氧化矽粉末的燒結行為差異 12
4-4.非晶質矽酸鋅與二氧化矽粉末初期燒結活化能比較 12
伍、結論 13
陸、參考文獻 15
表索引
表一、二氧化矽BET/BJH吸脫附滯留洄圈曲線的數據 18
表二、二氧化矽添加PVA BET/BJH吸脫附滯留洄圈曲線的數據 19
表三、矽酸鋅 BET/BJH吸脫附滯留洄圈曲線的數據 20
圖索引
圖1.非晶質二氧化矽40nm粒徑乾壓粉餅的BJH吸脫附滯留洄圈曲(degas)溫度300oC 20
圖2.非晶質二氧化矽40nm粒徑添加1wt% PVA乾壓粉餅的BJH吸脫附滯留洄圈曲線(degas 300oC) 21
圖3.非晶質矽酸鋅10nm~20nm粒徑乾壓粉餅的BJH吸脫附滯留洄圈曲線(degas 300oC) 21
圖4.非晶質二氧化矽乾壓粉餅燒結收縮效應寫 22
圖5.非晶質白色矽酸鋅粉餅因燒結而顏色變化的寫真 22
圖6.掃瞄式電子顯微鏡二次電子影像, 顯示非晶質二氧化矽乾壓粉餅的燒結微觀組織變化 23
圖7.掃瞄式電子顯微鏡二次電子影像, 顯示非晶質二氧化矽添加PVA乾壓粉餅的燒結微觀組織變化 23
圖8.掃瞄式電子顯微鏡二次電子影像, 顯示非晶質二氧化矽添加PVA乾壓粉餅於較高溫度的燒結微觀組織變化 24
圖9.掃瞄式電子顯微鏡二次電子影像, 顯示非晶質二氧化矽乾壓粉餅因添加PVA而幫助燒結及大孔洞的聚簇 24
圖10.掃瞄式電子顯微鏡二次電子影像, 顯示非晶質矽酸鋅乾壓粉餅的燒結微觀組織變化 25
圖11.掃瞄式電子顯微鏡二次電子影像, 顯示非晶質矽酸鋅乾壓粉餅於較高溫度的燒結微觀組織變化 25
圖12.非晶質二氧化矽乾壓粉餅的掃瞄式電子顯微鏡 26
圖13.原始非晶質二氧化矽40-60nm粒徑粉末的X光繞射圖 26
圖14.X光繞射圖 (a)二氧化矽熱處理1300℃-40min,(b)二氧化矽熱處理1300℃-60min,(c)二氧化矽熱處理1400℃-20min,(d)二氧化矽添加PVA 熱處理1300oC-40min生成單斜相鱗石英和(101)正方體方石英,(e) 二氧化矽添加PVA熱處理1300oC-60min生成正方體方石英相 27
圖15. X光繞射圖 矽酸鋅 (a)未熱處理的粉末,(b)熱處理600oC-30min生成六方結構氧化鋅, (c)熱處理700oC-20min出現β相矽酸鋅、α相矽酸鋅和氧化鋅,(d)熱處理700oC-40minβ相矽酸鋅、α相矽酸鋅和氧化鋅,(e)熱處理800oC-3min為氧化鋅,(f)熱處理900oC-1min為氧化鋅 27
圖16. 拉曼光譜顯示40nm非晶質二氧化矽粉餅於1150-1300oC 40-60 min範圍內熱處理造成的結構與振動模式變化 28
圖17. FTIR光譜顯示 (a)40nm非晶質二氧化矽粉末,(b)熱處理1300℃-10min的粉餅,(c) 添加1wt%PVA熱處理1300℃-10min的粉餅,(d) 添加1wt%PVA熱處理1300℃-60min的粉餅 28
圖18. 二氧化矽粉末 穿透式電子顯微鏡(a)BFI粉末大小約40nm,(b)為(a)放大圖, (c)成分分析 29
圖19. 矽酸鋅粉末 穿透式電子顯微鏡(a)奈米級的顆粒堆疊,(b)選區繞射圖-受電子束影響生成氧化鋅和β相矽酸鋅,(c)成分分析 29
圖20. 矽酸鋅鋅粉餅 熱處理700oC-40min 穿透式電子顯微鏡(a)明視野影像圖,(b) 高解析度影像正方點線區傅立葉轉換β相矽酸鋅,(c) 高解析度影像正方點線區傅立葉轉換氧化鋅 30
圖21. 矽酸鋅鋅粉餅 熱處理700oC-40min 穿透式電子顯微鏡 顯示(a)高解析度解析度影像,(b) 正方點線區域傅立葉轉換α相矽酸鋅 30
圖22. 矽酸鋅鋅粉餅 熱處理700oC-40min 穿透式電子顯微鏡 顯示(a)明視野影像圖(b) 電子繞射圖 顯示六方體氧化鋅、β相矽酸鋅、α相矽酸鋅 31
圖23. 阿瑞尼士活化能圖 40nm二氧化矽添加1wt% PVA在比表面積收縮30%的活化能 31
圖24. 阿瑞尼士活化能圖 奈米級矽酸鋅在比表面積收縮50%的活化能 32

附錄索引
附錄 一 (a)Types of physisorption isotherms (b)Types of hysteresis loops 33
附錄 二10nm γ-Al2O3 在各溫度不同時間的BJH吸脫附滯留洄圈曲線圖 33
附錄 三SiO2相圖 34
附錄 四矽酸鋅的合成條件與相轉變溫度 34
附錄 五JCPDS file 71-0197-SiO2 35
附錄 六JCPDS file 39-1425-SiO2 36
附錄 七JCPDS file36-1451-ZnO 36
附錄 八JCPDS file-14-0653-Zn2SiO4 37
附錄 九 JCPDS file-83-2270-willemite 38
附錄 十 40nm的非晶質二氧化矽比表面積縮收百分比和溫度的關係曲線圖,而虛 線為 t0.3為比表面積收縮30%,用於活化能計算 39
附錄 十一 40nm非晶質 二氧化矽溫度和比表面積收縮率關係圖 39
附錄 十二 10-20nm的非晶質矽酸鋅比表面積縮收百分比和溫度的關係曲線圖,而 虛線為t0.5為比表面積收縮50%,用於活化能計算 40
附錄 十三 10-20nm非晶質矽酸鋅 溫度和比表面積收縮率關係圖 40


第二部分
摘要 iii
目錄 vii
圖索引 xiii
附錄索引 xiv
壹、前言 41
貳、實驗步驟與方法
2-1. 溶液製備 44
2-2. 脈衝雷射剝蝕 44
2-3. UV-Vis吸收光譜 44
2-4. X-光繞射分析 44
2-5. 霍式轉換紅外光譜儀 45
2-6. 穿透式電子顯微鏡 45
參、實驗結果
3-1. UV-Vis吸收光譜 46
3-2. X-光繞射分析 46
3-3. 霍式轉換紅外光譜儀 46
3-4. 穿透式電子顯微鏡 46
肆、討論
4-1. 是否形成蛋白石或高壓相 47
4-2. 非晶二氧化矽顆粒受脈衝雷射碎化與形狀及結構變化的原因 48
4-3. 在去離子水和飽和食鹽水中雷射剝蝕及後續電子束照射的行為差異 49
4-4. 動態自然產狀與潛在工業應用 50
伍、結論 52
陸、參考文獻 53
圖索引
圖1. 非晶質二氧化矽粉末於不同濃度或液面高度條件之下, 承受脈衝雷射剝碎水合或氫化後的UV-Vis吸收光譜 57
圖2. 原始非晶質二氧化矽40-60nm粒徑粉末的X光繞射圖 58
圖3. 非晶質二氧化矽粉末於不同濃度或液面高度條件之下, 承受532nm脈衝雷射剝碎水合或氫化後的X光繞射圖 58
圖4. 非晶質二氧化矽粉末於不同濃度或液面高度條件之下, 承受脈衝雷射剝碎水合或氫化後的FTIR光譜 59
圖5. 為圖4.(d)(e)2500cm-1~1400cm-1放大的FTIR光譜 顯示SiHx的對稱振動 59
圖6. 原始非晶質二氧化矽40-60nm粒徑粉末的穿透式電子顯微鏡 60
圖7. 非晶質二氧化矽粉末於不同濃度或液面高度條件之下, 承受脈衝雷射剝碎水合或氫化後的低倍(上圖)與高倍(下圖)穿透式電子顯微鏡明視野影像 60
圖8. 非晶質二氧化矽粉末於不同濃度或液面高度條件之下, 承受脈衝雷射剝碎水合或氫化後的低倍(上圖)與高倍(下圖)穿透式電子顯微鏡明視野影像 61
圖9. 非晶質二氧化矽粉末0.02g於去離子水液面高度1cm承受脈衝雷射剝碎水合或氫化30min的 (a)明視野影像圖, (b)高解析度圖為(a)圖在電子束照射約1~2分鐘後的變化, (c)為(b)圖的繞射圖, 顯示有氧化矽的水合物(h)和β相方石英 62
圖10. 非晶質二氧化矽粉末0.02g於去離子水液面高度1cm承受脈衝雷射剝碎水合或氫化30min然後在電子束照射約1~2分鐘後的(a)高解析晶格影像度圖, (b) 正方點線區域傅立葉轉換圖, (c) 正方點線區域反傅立葉圖, 顯示出現β-方石英 63
圖11. 非晶質二氧化矽粉末0.02g於飽和食鹽水液面高度1cm承受脈衝雷射剝碎水合或氫化20min的穿透式電子顯微鏡影像(a)明視野影像圖, (b)電子繞射圖顯示有NaCl繞射點及α相的麟石英繞射環 ,(c)成分分析 63
圖12. 非晶質二氧化矽粉末0.02g於飽和食鹽水液面高度1cm承受脈衝雷射剝碎水合或氫化20min造成矽酸鈉結晶的穿透式電子顯微鏡影像: (a)明視野影像圖, (b)電子繞射圖對應Na2SiO3 64
圖13. 非晶質二氧化矽粉末0.02g於飽和食鹽水液面高度1cm承受脈衝雷射剝碎水合或氫化20min的穿透式電子顯微鏡影像: (a)原始明視野影像圖和電子繞射圖, (b)為(a)在電子束照射大約10min~20min後的明視野影像圖和電子繞射圖顯示出六方體的氧化矽水合物(h)、α相的麟石英、β相的方石英持續結晶長大 64
圖14. 非晶質二氧化矽粉末0.02g於飽和食鹽水液面高度1cm承受脈衝雷射剝碎水合或氫化20min然後在電子束照射大約1~2min後出現正方體β相方石英雙晶的穿透式電子顯微鏡影像: (a)晶格影像圖, (b)正方點線區域傅立葉轉換, (c)反傅立葉轉換圖顯示整合( 1)雙晶面 65
圖15. 非晶質二氧化矽粉末0.02g於飽和食鹽水液面高度1cm承受脈衝雷射剝碎水合或氫化20min然後在電子束照射大約1~2min後出現α相麟石英的晶格影像與正方點線區域傅立葉轉換: (a)[8 15 ]晶軸, (b) [ 72]晶軸, 顯示傅立葉轉換繞射點可鑑定為單斜體α相麟石英 66
附錄索引
附錄 一 二氧化矽相圖 67
附錄 二JCPDS file 71-0197-SiO2 68
附錄 三JCPDS file 85-0621-SiO2 69
附錄 四JCPDS file 72-0606-H2Si2O5 69
附錄 五JCPDS file 16-0818-Na2SiO3 70
附錄 六JCPDS file 05-0625-NaCl 70
參考文獻 References
第一部分
[1]Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T., “Reporting physisorption data for gas/sold system with special reference to the determination of surface area and porosity,” Pure Appl. Chem., 57 (1985) 603-619.
[2]Langmuir I., “The constitution and fundamental properties of solids and liquids” J. Am. Chem. Soc., 38 (1916) 2221-2295.
[3]Brunauer S., Emmett P.H., Teller E., “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60 (1938) 309-319.
[4]Liu I.L., Shen P., “Onset coarsening-coalescence kinetics of γ-type related Al2O3 nanoparticles: Implications to their assembly in a laser ablation process,” J. Euro. Ceram.Soc., 29 (2009) 2235-2248.
[5]Yeh Y.C., Liu I.H., Shen P., “Onset coarsening/coalescence of cobalt oxides in the form of nanoplates versus equi-axed micron particles,” J. Euro. Ceram. Soc., 30 (2010) 677–688.
[6]Liu I.H., Shen P., “Coarsening, coalescence and sintering of hexagonal ZnO elongated nanoparticles,” Ceram. International, 36 (2010) 1289-1296.
[7]陳姿蓉, “氧化鋅溶入及排出二氧化鈦造成之缺陷微觀組織以及奈米級二氧化鈦之早期燒結” 國立中山大學95學年度碩士論文。
[8]Kingery W.D., Bowen H.K., Uhlmann D.R., “Introduction to Ceramics,” second edition, John Wiley &Sons Inc., (1976) p. 99.
[9]蕭景穗, 二氧化矽學問大, 科學月刊全文資料庫 1985年6月186期
[10]卓恩宗、蔡增光、潘扶民 楊家銘、趙桂蓉,“規則性奈米孔洞超低介電常數二氧化矽薄膜之製備,”奈米通訊,第九卷,第三期 38-44.
[11]Sacks M.D., Tseng T.Y., “Preparation of SiO2 glass from model powder compacts: I, Formation and characterization of powders,suspensions and green compact,” J. Am. Ceram.Soc.,67 (1984) 526-532.
[12]Satoshi T., Chiu C.P., Zenji K., Keizo U., “Effect of internal binder on microstructure in compacts made from granules,” J. Euro. Ceram. Soc., 27 (2007) 873-877.
[13]Lin C.C., Shen P., “Sol-gel synthesis of zinc orthosilicate,” J. Solid State Chem., 112 (1994) 381-386.
[14]Ilieva A., Mihailov B., Tsintsov Z., Petrov O., “Structural state of microcrystalline opals: A Raman spectroscopic study,” Am. Mineral. 92 (2007) 1325.1333.
[15] Fidalgo A., Ilharco L.M., “The defect structure of sol-gel-derived silica /polytetra-
hydrofuran hybrid films by FTIR,’’ J. Non-crystalline Solids, 283 (2001) 144-154.
[16] Tudisco C., Sfrazzetto G.T., Pappalardo A., Motta A., Tomaselli G.A.,
Fragalà I.L., Ballistreri F.P., Condorelli G.G., “Covalent functionalization of silicon surfaces with a cavitand-modified salen,” Eur. J. Inorg. Chem. (2011) 2124-2131.
[17]Kingery W.D., Bowen H.K., Uhlmann D.R., “Introduction to Ceramics second edition” John Wiley & Sons Inc., (1976) p. 478. (Note this reference is about the same book as ref. 8 but refers to different page.)
[18]Uchino T., Aboshi A., Kohara S., Ohishi Y., Sakashita M., Aoki K., “Microscopic structure of nanometer-sized silica particle,” Physical Review B 69 (2004) 155409.
[19]Yuan P., He H.P., Wu D.Q., Wang D.Q., Chen L.J., “Characterization of diatomaceous silica by Raman spectroscopy,” Spectrochimica Acta Part A 60 (2004) 2941-2945.
[20]Innocenzi P., Falcaro, P., “Order-disorder transition and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy,” J. Phys. Chem.B 107 (2003) 4711-4717.
[21]Lin C.C., Shen P., “Nonisothermal site saturation during transformations of Zn2SiO4,” J. Solid State Chem.,112 (1994) 398-391.
[22]Lin C.C., Shen P., “Role of srew axes in dissolution of willemite,” Geochimica et Cosmochimica Acta, 57 (1993) 1649-1655.
[23]Van der Voort P., Ravikovitch P.I., De Jong K.P., Benjelloun M., Van Bavel E., Janssen A.H., Neimark A.V., Weckhuysen B.M., Vansant E.F., “A new template ordered structure with combined micro- and mesopores and internal silica nanocapsules,’’J. Phy. Chem. B 106 (2002) 5873-5877.
[24]Sacks M.D., Tseng T.Y., “Preparation of SiO2 glass from model powder compacts: II, sintering,” J. Am. Ceram. Soc. 67 (1984) 532-537.
[25]Herring C., “Effect of change of scale on sintering phenomena,” J. Appl. Phys. 21 (1950) 301-330.
第二部份
[1]http://www.britannica.com/EBchecked/topic/544220/silica-mineral/80057/Opal also refer to Liu, L.G., Bassett W.A., “Elements, oxides, and silicates: High-pressure phases with implications for the Earth’s interior,” Oxford University Press, New York, (1986) (see p. 110).
[2]Grapes R.H., Müller-Sigmund H., “Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy”, Mineralogy and Petrology, 99 (2010) 67–74.
[3]http://eetd.lbl.gov/l2m2/laser.html
[4]Yang G.W., “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Progress in Materials Science , 52 (2007) 648-698.
[5]Kawasaki M., Masuda K., “Laser fragmentation of water-suspended gold flakes via spherical submicroparticles to fine nanoparticles,” J. Phys. Chem. B, 109 (2005) 9379-9388.
[6]Boyer P., Ménard D., Meunier M., “Nanoclustered Co-Au particles fabricated by femtosecond laser fragmentation in liquids,” J. Phys. Chem. C, 114 (2010) 13497-13500.
[7]Liu I.L., Shen P., Chen S.Y., “H+ and Al2+-codoped Al2O3 nanoparticles with spinel-type related structures by pulsed laser ablation in water,” J. Phys. Chem. C, 114 (2010) 7751-7757.
[8]Yang S., Cai W., Zeng H., Li Z., “Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence,” J. Appl. Phys., 104 (2008) 023516-1-023516-5.
[9]Yang S., Cai W., Zhang H., Xu X., Zeng H., “Size and structure control of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification,” J. Phys. Chem. C, 113 (2009) 19091–19095.
[10]Yang S., Cai W., Liu G., Zeng H., Liu P., “Optical study of redox behavior of silicon nanoparticles induced by laser ablation in liquid,” J. Phys. Chem. C, 113 (2009) 6480–6484.
[11]Uchino T., Yamada T., “White light emission from transparent SiO2 glass prepared from nanometer-sized silica particles,” Appl. Phys. Lett., 85 (2004) 1164-1166.
[12]Kusabiraki K., Shiraishi Y., “The infrared spectrum of vitreous fayalite,’’ J. Non-Crystalline Solids, 44 (1981) 365-368.
[13] Tudisco C., Sfrazzetto G.T., Pappalardo A., Motta A., Tomaselli G.A.,
Fragalà I.L., Ballistreri F.P., Condorelli G.G., “Covalent functionalization of silicon surfaces with a cavitand-modified salen,” Eur. J. Inorg. Chem. (2011) 2124-2131.
[14]Jones J.B., Segnit E.R., “The nature of opal I. nomenclature and constituent phases,” J. Geol. Soc. Aust., 18(1) (1971) 57-68.
[15]Wang G.W., “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci., 52 (2007) 648–698.
[16]Barcikowski S., Devasa F.; Moldenhauer K., “Impact and structure of literature on nanoparticle generation by laser ablation in liquids,” J. Nanopart. Res., 11 (2009) 1883–1893.
[17]Amendola V., Meneghetti M., “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys., 11 (2009) 3805–3821.
[18]Sakamoto S., Fujutsuka M., Majima T., “Light as a construction tool of metal nanoparticles: synthesis and mechanism,” J. Photochem. Photobiol. C: Rev., 10 (2009) 33–56.
[19]Semaltianos N.G., “Nanoparticles by laser ablation,” Crit. Rev. Solid State Mater. Sci., 35 (2010) 105–124.
[20]Kamat P.V., Fluminani M., Hartland G.V., “Picosecond dynamics of silver nanoclusters: photoejection of electrons and fragmentation,” J. Phys. Chem. B, 102 (1998) 3123–3128.
[21]Werner D., Hashimoto S., “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C, 115 (2011) 5063-5072.
[22]Takami A., Kurita H., Koda S., “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B, 103 (1999) 1226–1232.
[23]Warren B.E., Krutter H., Morningster O., “Fourier analysis of X-ray patterns of vitreous SiO2 and B2O3,” J. Am. Ceram. Soc., 19 (1936) 202-206.
[24]Mozzi R.L., Warren B.E., “The structure of vitreous silica,” J. Appl. Cryst., 2 (1969) 164-172.
[25]Ching W.Y., “Theory of amorphous SiO2 and SiOx I, Atomic structural models,” Physical Rev. B (Condensed Matter.) , 26 (1982) 6610-6621.
[26]Elliott S.R., “Physics of amorphous materials,” 2nd ed. Longman Scientific & Technical, 1990, pp. 1-481.
[27]Elliott S.R., “Medium-range structural order in covalent amorphous solids,” Nature , 354 (1991) 445-452.
[28]Gibson J.M., Treaty M.M.J., Voyles P.M., Jin H.C., Abelson J.R., “Structural disorder induced in hydrogenated amorphous silicon by light soaking,” Appl. Phys. Lett. , 73 (1998) 3093-3095.
[29]Voyles P.M., Jin H.C., Abelson J.R., Gibson J.M., Treaty M.M.J., “Medium-range order in hydrogenated amorphous silicon measured by fluctuation microscopy,” Conference Paper presented at the 2000 Spring Meeting of the Materials Research Society, San Francisco, CA, April 24-28 (2000).
[30]Inaki Y., Yoshida H., Yoshida T., Hattori T., “Active sites on mesoporous silica material and their photocatalytic activity: an investigation by FTIR, ESR, VUV-UV and photoluminescence spectroscopies,” J. Phys. Chem. B, 106 (2002) 9098-9106.
[31] French R.H., Abou-Rahme R., Jones D.J., McNeil L.E., “Absorption edge and band gap of SiO2 fused silica glass,” Ceramic Transactions 28 (1992) "Solid State Optical Materials”, edited by Bruce A.J. and Hiremath B.V., American Ceramic Society, Westerville OH, (1992) 63-80.
[32]Chuang I.S., Maciel G.E., “A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces,” J. Phys. Chem. B, 101 (1997) 3052-3064.
[33]Chukin G.D., Malevich V.I., “Infrared spectra of silica,” J. Appl. Spectroscopy, 26 (1977) 294-301.
[34]Innocenzi P., Falcaro P., “Order-disorder transition and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy,” J. Phy. Chem. B, 107 (2003) 4711-4717.
[35]Putnis A., "Introduction to Mineral Sciences," Cambridge University Press, 1992 (see p. 172-173)
[36]Stevens S.J., Hand R.D., Sharp J.H., “Polymorphism of silica,’’ J. Mater. Sci., 32 (1997) 2929-2935.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.214.32
論文開放下載的時間是 校外不公開

Your IP address is 3.149.214.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code