Responsive image
博碩士論文 etd-0622113-132848 詳細資訊
Title page for etd-0622113-132848
論文名稱
Title
基於可循環式的陣列波導光柵實現雙向可調式光塞取多工器實驗之研究
Experimental studies of Bidirectional ROADM configuration based on cyclic-AWGs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-19
繳交日期
Date of Submission
2013-07-22
關鍵字
Keywords
陣列波導光柵、可調式光塞取多工器、自動交換光網路系統、下世代網路、高密度分波多工、布雷格光纖光柵
ASON, DWDM, NGN, FBG, AWG, ROADM
統計
Statistics
本論文已被瀏覽 5655 次,被下載 524
The thesis/dissertation has been browsed 5655 times, has been downloaded 524 times.
中文摘要
隨著下世代網路(Next generation networking, NGN)所發展出通用多重通訊協定標籤交換技術(Generalized Multi- Protocol Label Switching, GMPLS)中所需之自動交換光網路系統(Automatically Switched Optical Network, ASON),可調式光塞取多工器(Reconfigurable optical add-drop multiplexer, ROADM)對ASON系統來說是一個不可或缺的元件,且高密度分波多工系統(Dense wavelength-division multiplex, DWDM)的信號在網路傳輸的管理下,其可協助網路管理員動態的管理客戶需求及所要的服務品質(Quality of Service, QoS),並增加現有光纖線路的容量、減少或免除架設額外光纖線路的需要。
本論文研究ROADM以循環式陣列波導光柵(Array waveguide grating, AWG)和布雷格光纖光柵(fiber Bragg grating, FBG)為基礎架構,並且加入光循環器以及光纖光柵之架構擁有低串擾和不隨偏振擾動的特點,使得此架構值得被探討與研究。
在此論文中,提出了一種雙向性的ROADM,並且分析此架構的性能,實驗證實了所提出的實雙向性架構能夠把波長做更彈性的應用, 但此架構運用過多的元件數量而使插入損耗增加。
Abstract
In response to the development of a next-generation networking (NGN), generalized multi-protocol label switching (GMPLS) technology is required for automatically switched optical network (ASON). Reconfigurable optical add-drop multiplexer (ROADM) is an indispensable device for the ASON, and the dense wavelength division multiplexed (DWDM) signals can be transmitted through the network under the management of the network administrator to configure dynamic customer needs and the desired quality of service (QoS). The ROADM can also increase the efficiency of utilizing the existing capacity of the optical fiber lines and can reduce or waive to set up additional optical fiber lines. This thesis studies a ROADM based on the arrayed waveguide grating (AWG) and the fiber Bragg grating (FBG) with hybrid optical circulator. The FBG based ROADM is attractive because of its low crosstalk and polarization insensitivity, and it is valuable to discuss and research it. In this thesis, the bidirectional ROADM is proposed. By analyzing the performances of the system experimentally, it is found the bidirectional structure can apply utilized wavelength signals more flexibly; however, the insertion loss increases due to too many components in this architecture.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
致謝 iii
中文摘要 iv
Abstract v
Contents vi
List of Figures viii
List of Tables ix

1 Introduction 1
1.1 Background of Next-Generation Optical Internet. . . . . . . . . . 1
1.2 The GMPLS Paradigm . . . . . . . . . . . . . . . . . . . . . . .. . . . .4
1.3 Motivation of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . .7
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Overview of OADM system 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Technologies of OADM system . . . . . . . . . . . . . . . . . . . . . 11
2.3 Function of the proposed ROADM . . . . . . . . . . . . . . . . . . .22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3 Experimental Study of OADM 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2.1 Optical circulator . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.2.2 Static set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.2.3 Dynamic set up . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.3 Experimental Results and Discussions . . . . . . . . . . . . . . . 36
3.3.1 Homowavelength crosstalk . . . . . . . . . . . . . . . . . . . 37
3.3.2 Static Performance . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Dynamic performance . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

4 Conclusion 49

Acronyms x
參考文獻 References
[1] Kuznetsov, M; Froberg, NM; Henion, SR, et al. “A next-generation optical regional access network,” IEEE COMMUNICATIONS MAGAZINE, Vol. 38, No. 1, pp. 66-72 , JAN. 2000.
[2] Kazovsky, LG; Shaw, WT; Gutierrez, D, et al. “Next-generation optical access networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 25, No. 11, pp. 3428-3442, 2007.
[3] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons Inc., 1991.
[4] D. Katz, K. Kompella, and D. Yeung. “Traffic engineering (TE) extensions to OSPF version2,” IETF RFC 3630, SEPT. 2003.
[5] E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, OCT. 2004.
[6] Sabella, R; Settembre, M; Oriolo, G, et al. “A multilayer solution for path provisioning in new-generation optical/MPLS networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21, No. 5, pp. 1141-1155, MAY 2003.
[7] Elwalid, A; Mitra, D; Saniee, I, et al. “Routing and protection in GMPLS networks: From shortest paths to optimized designs,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21, No. 11, pp. 2828-2838, NOV 2003.
[8] R. Munoz, R. V. M Rivera, J. Sorribes, and G. J. Giralt, “Experimental GMPLS-Based Provisioning,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 23, No. 10, pp. 3034-3045, OCT. 2005.
[9]. K. Iwatsuki, Jun-ichi Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” IEEE J. Lightwave Technol., vol. 22, no 11, pp. 1623-1630, Nov. 2004.
[10]. J.-K.Rhee, I. Tomkos, and Ming-Jun Li “A broadcast-and-select OADM optical network with dedicated optical-channel protection,” IEEE J. Lightwave Technol.,
vol. 21, no 1, pp. 25-31, Jan. 2003.
[11]. P. Arijs, R. Meersman, W. Van Parys, E. Iannone, A. Tanzi, M. Pierpaoli, F. Bentivoglio, and P. Demeester, “Architecture and design of optical channel
protected ring networks,” IEEE J. Lightwave Technol., vol. 19, no 1, pp. 11-22, Jan. 2001.

[1]. K.O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[2]. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, Aug. 1997.
[3]. S.D. Dods and R.S. Tucker, “A comparison of the homodyne crosstalk characteristics of optical add-drop multiplexers,” IEEE J. Lightwave Technol., vol. 19, no. 12, pp. 1829-1838, Dec. 2001.
[4]. R.J.S. Pedersen and B.F.Jorgensen, “Impact of coherent crosstalk on usable bandwidth of a grating-MZI based OADM,” IEEE Photonics. Technol. Lett., vol. 10, no. 4, pp. 558-560, April 1998.
[5] Y.K. Chen, C.H. Chang, Y.L. Yang, I.Y. Kuo, T.C. Liang, “Mach–Zehnder fiber-grating-based fixed and recon-figurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. (1999) 245–262.
[6] C. Pu, L.Y. Lin, E.L. Goldstein, R.W. Tkach, Client-configurable eight-channel optical add/drop multiplexer using micromachining technology, IEEE Photon. Technol. Lett. 12 (2000) 1665–1667.
[7] H. Okayama, Y. Ozeki, and T. Kunii, “Dynamic wavelength selective add/drop node comprising tunable gratings,” Electronics Letters, vol. 33, no. 10, pp. 881–882, May 1997.
[8] Jungho Kim and Byoungho Lee, “Bidirectional Wavelength Add-Drop Multiplexer Using Multiport Optical Circulators and Fiber Bragg Gratings,” Photon. Technol. Lettr., vol. 12, no 5, pp. 561-563, May 2000.
[9] Hai Yuan, Wen-De Zhong, , and Weisheng Hu” FBG-Based Bidirectional Optical Cross Connects for Bidirectional WDM Ring Networks “JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2004.
[10] Chen-Mu Tsai and Yu-Lung Lo, “Fiber-Grating Add-Drop Reconfigurable Multiplexer with Multi-channel Using in Bi-directional Optical Network,” Optical Fiber Technology, vol. 13, no. 3, pp. 260-266, July. 2007.
[11]. K.A. McGreer, “Arrayed waveguide gratings for wavelength routing,” IEEE Commun. Mag., vol. 36, no. 12, pp. 62-68, Dec. 1998.
[12]. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon Technol. Letter, vol. 3, pp. 812-815, 1991.
[13]. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
[14]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” IEEE J. Lightwave Technol.,
vol. 13, no. 3, pp. 447-455, March 1995.
[15]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” IEEE J.
Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code