Responsive image
博碩士論文 etd-0622113-170740 詳細資訊
Title page for etd-0622113-170740
論文名稱
Title
雙芴環衍生物之合成及其於藍光與白光有機發光二極體之應 用
Synthesis of spirobifluorene derivatives and their applications in blue and white organic light-emitting diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-08-06
關鍵字
Keywords
有機電機發光二極體、白光照明、高熱穩定性、單層白光、雙芴環
Organic light emitting diode, Thermal stability, White light, Spiro, Single white-emitting layer
統計
Statistics
本論文已被瀏覽 5763 次,被下載 0
The thesis/dissertation has been browsed 5763 times, has been downloaded 0 times.
中文摘要
於此研究中,利用Suzuki coupling反應合成TPSBF,BNASBF和TNASBF三種螢光藍光發光材料之結構中心為旋環雙芴基(spirobifluorene),並於中心基團之2,2´或2,2´,7,7´接上芳香環取代基,選用此系列材料作為研究之原因為(i)以spirobifluorene為中心之結構其含有此中心結構可以有效阻擋分子間π-π堆疊,且因中心含有剛硬的芳香環,使其衍生之分子材料具有極佳的立體阻礙,進而減少分子間作用,令其具高熱穩定,並引入pyrene,anthracene等官能基,可具有高的螢光發光效率,同時藉由分析其分子結構堆疊情形,作為形態之探討研究。並發現不同的製程條件,對spirobifluorene系列材料光電特性影響甚巨。首先使用製程方法較簡便的濕製程製作成元件,以元件結構ITO/PEDOT:PSS (50 nm)/PVK:TPSBF(40%) (90 nm)/BPhen (30 nm)/LiF (1 nm)/Al (200 nm)製作成標準藍光元件。此元件在電流密度500 mA/cm2的時候,最大亮度為4,130 cd/m2,電流密度在23 mA/cm2下,發光效率為 1.9 cd/A 以及功率效率為 0.9 lm/W,其CIE座標位(0.16, 0.16)位於深藍光區域。於研究在材料發光與薄膜特性中發現,TPSBF於特定鍍率下,隨著成膜厚度之增加會有明顯之長波段螢光放光光譜產生,此光譜之變化現象推測與此分子堆疊之特性有關。分析其頻譜,發現其分別由三段頻譜所組成,其主峰分別在450 nm、500 nm及550 nm的位置,在特定的製程條件下,甚至可得寬頻譜之白光光譜。因此、引發我們將其製作成白光元件之研究動機,以元件結構ITO(170 nm)/2T-NATA (15 nm)/NPB (65 nm)/TPSBF (50 nm)/Alq3 (30 nm)/LiF (0.8 nm)/Al (200 nm)製作成白光元件,得到CIE色座標為(0.29, 0.36)於白光區域且最高亮度達57,680 cd/m2,而發光效率高達6.5 cd/A之白光元件。
Abstract
In this study, we used Suzuki coupling to synthesize TPSBF, BNASBF, and TNASBF blue emitter featuring four identical strongly emitting pyrene and anthracene units linked around a stable spirobifluorene core. This fluorine derivative exhibits a high fluorescence yield, extreme thermal stability under N2 (three compounds exhibit distinct decomposition temperatures higher than 470℃), a high glass transition temperature (ca. 240 °C of TPSBF), and a stable deep blue emission in the solid state. The presence of the spiro linkage in the structure was active to the emitting behavior of the monomeric units. In addition, the tetrahedral nature of the carbon atom at the spiro center preserves the optical and electrochemical characteristics of the pristine pyrene and anthracene units. we describe how the morphology, photoluminescence (PL), and electroluminescence properties of 2,2´,7,7´-tetrakis(pyren-1-yl)-9,9´-spirobifluorene (TPSBF) are related to its film thickness and how, under optimized conditions, its three main PL emissions constitute a form of white light. We fabricated high-brightness, broad-spectrum, white-light organic light-emitting diodes incorporating a single emission layer of the blue light-emitting material TPSBF.
A blue organic light emitting diode system by spin-coating process having the configuration indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (50 nm)/ polyvinylcarbazole:TPSBF (43%) (90 nm)/4,7-diphenyl-1,10-phenanthroline (30 nm)/LiF (1 nm)/Al (200 nm) exhibited a luminance of 4,130 cd/m2 at 12 V, Commission Internationale d’Eclairage coordinates of (0.16, 0.16), and current and power efficiencies of 1.9 cd/A and 0.9 lm/W, respectively, at 23 mA/cm2.
In OLEDs, TPSBF which comprises four pyrene units linked to a spirobifluorene core. An organic light-emitting device having the configuration ITO (170 nm)/2T-NATA (15 nm)/NPB (65 nm)/TPSBF (50 nm)/Alq3 (30 nm)/LiF (0.8 nm)/Al (200 nm) were fabricated and exhibited a broad-spectrum white emission with a maximum luminescence and current efficiency of 57,680 cd/m2 and 6.51 cd/A, respectively, and Commission Internationale de l’Éclairage (x, y) coordinates of (0.29,0.36).
目次 Table of Contents
中文摘要 iv
Abstract v
Contents vii
List of Figures x
List of Tables xv
Organization of This Doctoral Thesis 1
Chapter 1 Introduction 2
1.1 The emitting materials of OLEDs 4
1.2 Development of poly-aromatic hydrocarbons (PAH) materials as emitter or host……………….. 7
1.3 Basic properties of fluorine spiro compounds 11
1.4 Introduction of OLEDs principle 14
1.5 Introduction-polymer light-emitting diode (PLED) 18
1.6 White light-emitting of OLEDs 20
1.7 luminescent mechanism of organic materials 23
Chapter 2 Background and motivation 31
Chapter 3 Molecular design and synthesis 36
3.1 Measurement 38
3.2 Compound prepared and experiments 38
3.2.1 Synthetics of 2,2´,7,7´-Tetrapyren-1-yl-9,9´-spirobifluorene (TPSBF) ………38
3.2.2 Synthetics of 2,2'-bis(9,10-di (naphthalen-2-yl) anthracen-2-yl)-9,9'-spiro bifluorene (BNASBF) 40
3.2.3 Synthetics of 2,2',7,7'-tetrakis (9,10-di(naphthalen-2-yl) anthracen-2-yl)-9,9'- spirobifluorene (TNASBF) 42
3.3 Measurement figures of experiment 44
Chapter 4 Characteristics of Materials 49
4.1 Thermal properties of materials 49
4.1.1 Thermal properties of TPSBF 49
4.1.2 Thermal properties of BNASBF 51
4.1.3 Thermal properties of TNASBF 52
4.1.4 Conclution 54
4.2 Photophysics characteristics of materials 57
4.2.1 Absorption and Photoluminescence spectra 58
4.2.2 PL analysis of TPSBF 60
4.3 Energy Level of materials 69
4.3.1 Energy level of compounds 70
4.3.2 HOMO and LUMO of Optimized Molecular Structure 71
4.4 Thin films by vacuum deposition of TPSBF 75
4.4.1 AFM morphological analysis 75
4.5 Molecular Dynamics Simulation 82
4.5.1 Materials Similation 82
4.5.2 Molecular Dynamic 82
4.5.3 Molecular Dynamic Simulation by Materials Studio 87
4.5.4 Experiment and discussion 88
Chapter 5 Fabrication and Characterization of devices 99
5.1 Fabricated PLEDs by TPSBF 99
5.1.1 Fabrication of PLEDs. 99
5.1.2 Properties of PLEDs 100
[Reference] 103
5.2 Fabricated OLEDs by TPSBF 104
5.2.1 OLED fabrication process 104
5.2.2 Characteristic of white OLEDs 107
Chapter 6 Conclusion 117
Chapter 7 Measurement 119
參考文獻 References
1 [Reference]
[1]. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[2]. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992).
[3]. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 64, 815 (1994).
[4]. T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, Appl. Phys. Lett. 92, 043301 (2008).
[5]. Q. F. Xu, H. M. Duong, F. Wudl, and Y. Yang, Appl. Phys. Lett. 85, 3357 (2004).
[6]. S. M. Chang, Y. J. Tzeng, S. Y. Wu, K. Y. Li, and K. L. Hsueh, Thin Solid Films 477, 38 (2005).
[7]. L. Duan, L. Hou, T. W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, and Y. J. Qiu, J. Mater. Chem. 20, 6392 (2010).
[8]. J. M. Shi, and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
[9]. V. E. Choohe, S. Shi, J. Curless, C. L. Shieh, H. C. Lee, F. So, J. Shen, and J. Yang, Appl. Phys. Lett. 75, 172 (1999).
[10]. Y. Sakakibara, S. Okutsu, T. Enokida, and T. Tani, Appl. Phys. Lett. 74, 2587 (1999).
[11]. Y. Hamada, H. Kanno, T. T. Sujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett. 75, 1682 (1999).
[12]. P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett. 76, 2493 (2000).
[13]. H. Mu, H. Shen, and D. Klotzkin, Solid-State Electronics 48, 2085 (2004).
[14]. C. W. Tang, S. A. VanSlyke, and C.H. Chen, J. Appl. Phys. 65, 3610 (1989).
[15]. C. W. Ko, and Y. T. Tao, Appl. Phys. Lett.79, 4234 (2001).
[16]. J. Feng, F. Li, W. Gao, S. Liu, Y. Liu, and Y. Wang, Appl. Phys. Lett. 78, 3947 (2001).
[17]. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 63, 1322 (1993).
[18]. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 67, 3853 (1995).
[19]. A. Fischer, S. Chénais, S. Forget, M. C. Castex, D. Adés, A. Siove, C. Denis, P. Maisse, and B. Geffroy, J. Phys. D: Appl. Phys. 39, 917 (2006).
[20]. J. Wang, J. S. Yu, L. Li, X. Q. Tang, and Y. D. Jiang, J. Phys. D: Appl. Phys. 41, 045104 (2008).
[21]. M. D. Joswick, I. H. Cambell, N. N. Barashkov, and J. P. Ferraris, J. Appl. Phys. 80, 2883 (1996).
[22]. S. Tao, Z. Peng, X. Zhang, P. Wang, C. S .Lee, and S. T. Lee, Adv. Funct. Mater. 15, 1716 (2005).
[23]. T. Zhang, D. Liu, Q. Wang, R. J. Wang, H. C. Ren, and J. Y. Li, J. Mater. Chem. 21, 12969 (2011).
[24]. J. Wang, W. Wan, H. Jiang, Y. Gao, X. Jiang, H. Lin, W. Zhao, and J. Hao, Org. Lett. 12, 3874 (2010).
[25]. J. H. Huang, J. H. Su, X. Li, M. K. Lam, K. M. Fung, H. H. Fan, K. W. Cheah, C. H. Chen, H. Tian, J. Mater. Chem. 21, 2957(2011).
[26]. I. Cho, S. H. Kim, J. H. Kim, S. Park, S. Y. Park, J. Mater. Chem. 22, 123 (2012).
[27]. F. Wurthner, and M. Stolte, Chem. Commun. 47, 5109 (2011).
[28]. H. Shimizu, K. Fujimoto, M. Furusyo, H. Maeda, Y. Nanai, K. Mizuno, and M. Inouye, J. Org. Chem. 72, 1530 (2007).
[29]. J. F. Gu, G. H. Xie, L. Zhang, S. F. Chen, Z. Q. Lin, Z. S. Zhang, J. F. Zhao, L. H. Xie, C. Tang, Y. Zhao, S. Y. Liu, and W. Huang, J. Phys. Chem. Lett. 1, 2849 (2010).
[30]. T. M. Figueira-Duarte, and K. Müllen, Chem. Rev. 111, 7260 ( 2011).
[31]. H. M. Qu, W. B. Cui, J. L. Li, J. J. Shao, and C. Y. Chi, Org. Lett. 13, 924 (2011).
[32]. S. U. Pandya, H. A. Al Attar, V. Jankus, Y. H. Zheng, M. R. Bryce, and A. P. Monkman, J. Mater. Chem. 21, 18439 (2011).
[33]. S. Tao, S. Xu, and X. Zhang, Chem. Phys. Lett. 429, 622 (2006).
[34]. S.Tao, Y. Zhou, C. S. Lee, X. Zhang, and S. T. Lee, Chem. Mater. 22, 2138 (2010).
[35]. Z. Zhao, J. H. Li, P. Lu, and Y. Yang, Adv. Funct. Mater. 17, 2203 (2007).
[36]. S. Jiao, Y. Liao, X. Xu, L. Wang, G. Yu, L. Wang, Z. Su, S. Ye, and Y. Liu, Adv. Funct. Mater. 18, 2335 (2008).
[37]. F. Liu, C. Tang, Q. Q. Chen, F. F. Shi, H. B. Wu, L. H. Xie, B. Peng, W. Wei, Y. Cao, and W. Huang, J. Phys. Chem. C 113, 4641 (2009).
[38]. R. Pudzich, T. Fuhrmann-Lieker, and J. Salbeck. Adv. Polym. Sci. 199, 83 (2006).
[39]. W. J. Shen, R. Dodda, C. C. Wu, F. I. Wu, T. H. Liu, H. H. Chen, C. H. Chen, and C. F. Shu, Chem. Mater. 16, 930 (2004).
[40]. K. T. Wong, Y. L. Liao, Y. T. Lin, H. C. Su, and C. C. Wu, Org. Lett. 7, 5131 (2005).
[41]. C. H. Chen, J. Shi, and C. W. Tang, Macromol. Symp, 125, 1 (1997).
[42]. Y. Hashimoto, Y. Osato, M. Tanaka, M. Hamagaki, and T. Sakakibara, Jpn. J. Appl. Phys. 41, 2249 (2002).
[43]. S. C. Tse, K. C. Kwok, and S. K. So, Appl. Phys. Lett. 89, 262102 (2006).
[44]. S. K. So, S. C. Tse, and K. L. Tong, J. Disp. Technol. 3, 225 (2007).
[45]. L. B. Groenendaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, Adv. Mater. 15, 855 (2003).
[46]. S. Kirchmeyer, and K. Reuter, J. Mater. Chem. 15, 2077 (2005).
[47]. B. E. Conway, Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Press, New York (1999).
[48]. E. W. H. Jager, E. Smela, and O. Inganäs, Science 290, 1540 (2000).
[49]. M. Gerard, A. Chaubey, and B. D. Malhotra, Biosens. Bioelectron. 17, 345 (2002).
[50]. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, Appl. Phys. Lett. 79, 174 (2001).
[51]. M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A. Winnacker, Appl. Phys. Lett. 76, 115 (2000).
[52]. L. S. Hunga, and C.H. Chen, Mater. Sci. Eng. R39, 143 (2002).
[53]. C. H. Chen, and J. Shi, Coord. Chem. Rev. 171, 161 (1998).
[54]. J. H. Burroughes , D. D. C. Bradley , A. R. Brown , R. N. Marks , K. Mackay , R. H. Friend , P. L. Burns , and A. B. Holmes , Nature 347, 539 (1990).
[55]. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Nature, 397, 121 (1999).
[56]. J. H. Kim, P. Herguth, M. Kang, A. K. Y. Jen, Y. Tseng, and C. Shu, Appl. Phys. Lett. 85, 1116 (2004).
[57]. M. Gaal, E. J. W. List, and U. Sherf, Macromolecules 36, 4236 (2003).
[58]. B. Hu, Z. Yang, and F. E. Karasz, J. Appl. Phys. 76, 2419 (1994).
[59]. P. de Sainte Claire, J. Phys. Chem. B, 110, 7334 (2006).
[60]. X. Yang, D. Neher, D. Hertel, and T. K. Daubler, Adv. Mater. 16, 161 (2004).
[61]. Y. Sun, N. C. Giebink, H. Knanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[62]. J. Kido, M. Kimura, and K. Nagai, Science 267, 1332 (1995).
[63]. B. W. D’Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004).
[64]. S. F. Service, Science 310, 1762 (2006).
[65]. M. Era, C. Adachi, T. T. Sutsui, and S. Saito, Chem. Phys. Lett. 178, 488 (1991).
[66]. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Science 276, 2009 (1997).
[67]. M. Yoshida, A. Fujii, Y. Ohmori, and K. Y Oshino, Jpn. J. Appl. Phys. 35 L397 (1996).
[68]. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, IEEE. Trans. Electron. Devices 44, 1188 (1997).
[69]. U. Mitschke, and P. Baüerle, J. Mater. Chem. 10, 1471 (2000).
[70]. B. W. D’Andrade, M. E. Thompson, and S. R. Forrest, Adv. Mater. 14, 147 (2002).
[71]. J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
[72]. C.H. Hsiao and J. H. Lee, J. Appl. Phys. 106, 024503 (2009).
[73]. J. H. Seo, J. H. Park, Y. K. Kim, J. H. Kim, G.W. Hyung, K. H. Lee, and S. S. Yoon, Appl. Phys. Lett. 90, 203507 (2007).
[74]. S. L. Tao, C. S. Lee, S. T. Lee, and X. H. Zhang, Appl. Phys. Lett. 91, 013507 (2007).
[75]. M. Y. Chang, C. C. Wu, S. C. Lin, and Y. F. Chen, J. Electrochem. Soc. 156, J1 (2009).
[76]. J. Liu, S. Y. Shao, L. Chen, Z. Y. Xie, Y. X. Cheng, Y. H. Geng, L. X. Wang, X. B. Jing, and F. S. Wang, Adv. Mater. 19, 1859 (2007).
[77]. M. C. Gather, A. Köhnen, and K. Meerholz, Adv. Mater. 23, 233 (2011).
[78]. Y. Xu, R. Guan, J. Jiang, W. Yang, H. Zhen, J. Peng, and Y. Cao, J. Poly. Scie. A: Poly.Chem. 46, 453 (2008).
[79]. M. Sessolo, and H. J. Bolink, Adv. Mater. 23, 1829(2011).
[80]. B. Hu, and F. E. Karasz, J. Appl. Phys. 93, 1995 (2003).
[81]. Y. Yang, and Q. Pei, J. Appl. Phys. 81, 3294 (1997).
[82]. M. L. Tsai, C. Y. Liu, M. A. Hsu, and T. J. Chow, Appl. Phys. Lett. 82, 550 (2003).
[83]. J. Jiang, Y. Xu, W. Yang, R. Guan, Z. Liu, H. Zhen, and Y. Cao, Adv. Mater. 18, 1769 (2006).
[84]. P. I. Shih, Y. H. Tseng, F. I. Wu, A. K. Dixit, and C. F. Shu, Adv. Funct. Mater. 16, 1582 (2006).
[85]. J. Y. Li, D. Liu, C. Ma, O. Lengyel, C. S. Lee, C. H. Tung, and S. T. Lee, Adv. Mater. 16, 1538 (2004).
[86]. L. Wang, M. F. Lin, W. K. Wong, K. W.Cheah, H. L. Tam, Z. Q. Gao, and C. H. Chen, Appl.Phys. Lett. 91, 183504 (2007).
[87]. L. J. Rothberg and A. J. Lovinger, J. Mater. Res. 11, 3174 (1996).
2 [Reference]
[1]. C. H. Chen, and J. M. Shi, Chem. Rev. 171, 161 (1998).
[2]. Y. Hamada, IEEE. Trans. Electron. Devices 44, 1208 (1997).
[3]. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 67, 3853 (1995)
[4]. M. Strukeji, R. H Jordan, and A. Dodabalapur, J. Am. Chem. Soc., 118 1213 (1996).
[5]. Z. Q. Gao, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 74, 865 (1999).
[6]. X. Z. Jiang, S. Liu, and H. Ma, Appl. Phys. Lett. 76, 1813 (2000).
[7]. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007).
[8]. J. Salbeck, M. Schörner, and T. Fuhrmann, Thin Solid Films 417, 20 (2002).
[9]. M. Matsumoto, T. Nakazawa, V. A. Mallia, N. Tamaoki, R. Azumi, H. Sakai, and M. Abe, J. Am. Chem. Soc. 126, 1006 (2004).
[10]. J. Salbeck, N. Yu, J. Bauer, F. Weissortel, and H. Bestgen, Synth. Met. 91, 209 (1997).
[11]. W. J. Shen, R. Dodda, C. C. Wu, F. I. Wu, T. H. Liu, H. H. Chen, C. H. Chen, and C. F. Shu, Chem. Mater. 16, 930 (2004).
[12]. S. Ye, Y. Liu, C. A. Di, H. Xi, W. Wu, Y. Wen, K. Lu, C. Du, Y. Liu, and G. Yu, Chem. Mater. 21, 1333 (2009).
[13]. K. Mimura, T. Madono, S. Toyama, K. Sugitani, R. Sugisaki, S. I. Iwamatsu, and S. Murata, J. Anal. Appl. Pyrolysis 72, 273 (2004).
[14]. K. S. Kim, Y. M. Jeon, J. W. Kim, C. W. Lee, and M. S. Gong, Organic Electronics 9, 797 (2008).
[15]. J. M. Hancock, A. P. Gifford, C. J. Tonzola, and S. A. Jenekhe, J. Phys. Chem. C 111, 6875 (2007).
[16]. T. S. Kale, K. Krishnamoorthy, M. Thelakkat, and S. Thayumanavan, J. Phys. Chem. Lett. 1, 1116 (2010).
[17]. K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, and S. M. Peng, J. Am. Chem. Soc. 124, 11576 (2002).
[18]. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, and G. Leising, J. Am. Chem. Soc. 123, 946 (2001).
[19]. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 56, 799 (1990).
[20]. C. Tang, F. Liu, Y. J. Xia, J. Lin, L. H. Xie, G. Y. Zhong, Q. L. Fan, and W. Huang, Org. Electron. 7, 155 (2006).
[21]. F. Liu, L. H. Xie, C. Tang, J. Liang, Q. Q. Chen, B. Peng, W. Wei, Y. Cao, and W. Huang, Org. Lett. 11, 3850 (2009).
[22]. H. Zhang, Y. Wang, K. Shao, Y. Liu, S. Chen, W. Qiu, X. Sun, T. Qi, Y. Ma, G. Yu, Z. Su, and D. Zhu, Chem. Commun. 755.757 (2006).
[23]. J. Sung, P. Kim, Y. O. Lee, J. S. Kim, and D. Kim, J. Phys. Chem. Lett. 2, 818 (2011).
[24]. K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I C. Chen, and C. H. Cheng, Adv. Funct. Mater. 18, 67 (2008).
[25]. F. Liu, C. Tang, Q. Q. Chen, F. F. Shi, H. B. Wu, L. H. Xie, B. Peng, W. Wei, Y. Cao, and W. Huang, J. Phys. Chem. C113, 4641 (2009).
[26]. W. L. Jia, T. M. Cormick, Q. D. Liu, H. Fukutani, M. Motala, R. Y. Wang, Y. Tao, and S. J. Wang, J. Mater. Chem. 14, 3344 (2004).
[27]. K. Sumi, and G. I. Konishi, Molecules 15, 7582 (2010).
[28]. P. C. Bevilacqua, R. Kierzek, K. A. Johnson, and D. H. Turner, Science 258, 1355 (1992).
3 [Reference]
[1] N. Miyaura and A. Suzuki, Chem. Rev. 95, 2457 (1995).
[2] M. Baumgarten, L. Gherghel, and W. Retting, J. Phys. Chem. A, 104 1130 (2000).
[3] (Patent; Kim, Hee-Yeon; Yang, Seung-Gak; Shin, Jung-Han; Lee, Chang-Ho; Ko, Hee-Joo; US2008/125593; (2008); (A1) English)
4 [Reference]
[1] S. Tao, Z. Peng, X. Zhang, P. Wang, C. S. Lee, and S. T. Lee, Adv. Funct. Mater. 15, 1716 (2005).
[2] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 56, 799 (1990).
[3] S. Tokito, and Y. Taga, Appl. Phys. Lett. 66, 673 (1995).
[4] Y. Kuwabara, H. Ogawa, H. Inada, N. Nona, and Y. Shirota, Adv. Mater. 6, 667 (1994).
[5] K. Katsuma, and Y. Shirota, Adv. Mater. 10, 223 (1998).
[6] A. Higuchi, H. Inada, T. Kobata, and Y. Shirota, Adv. Mater. 3, 549 (1991).
[7] H. Inada, and Y. Shirota, J. Mater. Chem. 3, 319 (1993).
[8] R. Fink, Y. Heischkel, M. Thelakkat, and H. Schmidt, Chem. Mater., 10, 3620 (1998).
4.2.3 [Reference]
[1] J. Ferguson, L. W. Reeves, and W. G. Schneider, Canadian jour. Of chem. 35, 1117 (1957)
[2] A. Staicu, G. Rouilleacute, O. Sukhorukov, Th. Henning, F. Huisken, Mol. Phys., 102, 1777 (2004).
[3] N. J. Turro, Modern Molecular Photochemistry (Benjamin Cummings, Menlo Park, CA, 1978).
[4] D.Thirion, C.Poriel, R.Métivier, R.-B. Joëlle, F.Barriére, and O.Jeannin, Chem. Eur. J. 17, 10272 (2011).
[5] S. Tao, S. D. Xu, and X. H. Zhang, Chem. Phys. Lett. 429, 622 (2006).
[6] T.Hinoue, Y.Shigenoi, M.Sugino, Y.Mizobe, I.Hisaki, M. Miyata, and N.Tohnai, Chem. Eur. J. 18, 4634(2012).
[7] P. K. Lekha, and E. Prasad, Chem. Eur. J. 17, 8609 (2011).
[8] S. Tao, Y. Zhou, C. S. Lee, S. T. Lee, D. Huang, and X. Zhang, J. Mater. Chem. 18, 3981 (2008).
4.3.3 [Reference]
[1] K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. P. Lee, and S. M. Peng, J. Am. Chem. Soc., 124, 11576 (2002).
[2] P. Maslak, and A. Chopra, J. Am. Chem. Soc., 115, 9331 (1993).
4.4.2 [Reference]
[1] K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J Huang, J. J. Lin, I.C. Chen, and C. H. Cheng, Adv.Funct.Mater.18, 67 (2008).
[2] F. Liu, C. Tang, Q. Q. Chen, F. F. Shi, H. B. Wu, L. H. Xie, B. Peng, W. Wei, Y. Cao, and W. Huang, J. Phys. Chem. C113, 4641 (2009).
[3] K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J Huang, J. J. Lin, I.C. Chen, and C. H. Cheng, Adv.Funct.Mater.18, 67 (2008).
[4] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klärner, R. D. Miller, and D. C. Miller, Macromolecules 32, 361 (1999).
4.5.5 [Reference]
[1] M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford Science Publications (1987).
[2] H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
[3] McQuarrie, Statistical Mechanics, Harper & Row (1976).
[4] S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. S. Lee, and S. T. Lee, Adv. Funct. Mater. 15, 1716 (2005).
[5] D. H. Lee, and M. J. Jin, Org. Lett. 13, 252 (2011).
5.2.3 [Reference]
[1] S. H. Kim, S. Park, J. E. Kwon, and S. Y. Park, Adv. Funct. Mater. 21, 644 (2011).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.189.177
論文開放下載的時間是 校外不公開

Your IP address is 3.144.189.177
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code