Responsive image
博碩士論文 etd-0622114-144955 詳細資訊
Title page for etd-0622114-144955
論文名稱
Title
載有天線的功率放大器模組之共設計
Co-design of a PA Module that Carries an Antenna
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-07-22
關鍵字
Keywords
射頻前端電路、倒F型天線、接地電流、自平衡模態、差動天線、巴倫器
PIFA, RF Front-end Circuit, Ground Current, Self-balanced Mode, Differential Antenna, Balun
統計
Statistics
本論文已被瀏覽 5706 次,被下載 0
The thesis/dissertation has been browsed 5706 times, has been downloaded 0 times.
中文摘要
本論文討論三個主題。第一部分為PCB和IPD兩種製程的巴倫器設計;在PCB部分是以電流感應型式的窄頻巴倫器架構,透過纏繞式線圈來降低電路面積,面積大小為8.1 × 8.6 mm2,在2.4 GHz的ISM頻帶其植入損耗小於1 dB、振幅不平衡小於0.5 dB、相位不平衡小於1°、且CMRR > 30 dB;在IPD部分使用馬遜巴倫器的架構,電路面積為2.03 × 1.13 mm2,操作頻帶為1 GHz到3 GHz,另外這顆巴倫器植入損耗小於1.7 dB、振幅不平衡小於1 dB、相位不平衡小於3°、且CMRR > 29 dB。
在第二部分以接地電流探討為主,首先對平衡天線去做平衡(差動)和不平衡(單端)饋入,並加入同軸電纜線模型去和一般微帶線饋入方式作比較,歸納出平衡型天線在差動饋入的型式下皆會產生整數倍波長的電流模態,而不平衡饋入除了產生整數倍波長的電流模態,還會相繼衍伸出半波長的電流模態,這種整數倍波長、半波長電流分佈方式對於天線架構分析有一定幫助。第二部分另一個主軸為晶片整合於同一系統板時如何降低晶片接地輻射對其他元件的干擾。本論文提出了以巴倫器作為抑制接地電流的元件,並以巴倫器和倒F型天線作共模擬來討論接地電流效應,得出巴倫器確實擁有降低接地電流並且使其較均勻分布的特性,電流最大值降低約25%到50%,然而其缺點則是降低天線的輻射效率。
最後一部分為主被動射頻前端晶片整合模擬,這個電路使用T18和IPD兩種製程來實現,彼此間透過錫球來做結合,主動電路的部分為實驗室學長設計的功率放大器,被動電路的部分則為巴倫器及天線,最終我們成功模擬出應用於5.8GHz的射頻前端電路。
Abstract
The thesis treats three main topics. In the first topic, we discuss the design of baluns realized using PCB and IPD processes. In the PCB process, we use an induced-current structure for balun design and wound-coil structure to reduce the area. The total size is 8.1 × 8.6 mm2, and characteristics of balun in ISM band at 2.4 GHz are as follows : The insertion loss, amplitude imbalance and phase difference were less than 1 dB, 0.5 dB and 1°respectively. Besides, the CMRR was greater than 30 dB. In the IPD process, we use the Marchand balun structure for frequency band from 1 GHz to 3 GHz, and its size was about 2.03 × 1.13 mm2. The insertion loss, amplitude imbalance, and phase difference were less than 1.7 dB, 1 dB, and 3°respectively. The CMRR was also greater than 29 dB.
In the second topic, we studied ground current distributions. At first, we analyzed balanced (Differential) and unbalanced (Single-ended) feeds for a balanced antenna. Besides, we also compared the current distributions for antenna fed by cable line and microstrip line. We found that the balanced antenna with balanced feeding had induced modes corresponding to wavelengths of full integers, and with the unbalanced feeding had modes corresponding to not only integer number but half wavelengths. This finding may help explaining the characteristics of antenna. The another part of the second topic is to suppress the interference created by ground radiation, so that other components in chip-package-board integration would not be affected. We proposed that balun be a circuit to suppress the ground current. Here, the effect of ground currents in a PIFA with balun was investigated. The results show that balun can reduce ground current and make current distribution more uniform, and the peak current value is reduce about 25 % to 50 %. However, this technique may reduce the radiation efficiency of the antenna.
The last topic is simulation of RF front-end transmitter circuit. Active circuit and passive circuits were designed using T18 and IPD processes, respectively. The active circuit is a power amplifier made by a senior from our laboratory, and the passive circuits consist of balun and PIFA. Flip chip interconnections are used to integrate the active device onto the IPD platform. Finally, co-design of the integrated RF front-end was conducted at the frequency band of 5.8GHz.
目次 Table of Contents
論文審定書 ....................................................................................................................... i
誌謝 .................................................................................................................................. ii
摘要 ................................................................................................................................. iv
Abstract ............................................................................................................................. v
目錄 ................................................................................................................................ vii
圖目錄 ............................................................................................................................. ix
表目錄 ........................................................................................................................... xiii
第一章 緒論 .................................................................................................................... 1
1.1 研究背景和動機 .................................................................................................... 1
1.2 射頻前端電路簡介和發展趨勢 ............................................................................ 1
1.3 論文架構 ................................................................................................................ 5
第二章 應用於802.11 B/G/N之巴倫器相關探討 ........................................................ 6
2.1 簡介 ........................................................................................................................ 6
2.2 新興平面立體螺旋纏繞架構之感應電流型式巴倫器 ........................................ 6
2.2.1 設計原理 ........................................................................................................ 6
2.2.2 感應電流形式巴倫器之軟體模擬架構分析 ................................................ 8
2.2.3 量測和模擬結果分析 ................................................................................... 11
2.3 實作在GIPD上的馬遜巴倫器(Marchand Balun) ............................................. 20
2.3.1 GIPD介紹 ..................................................................................................... 20
2.3.2 馬遜巴倫器設計原理和實作介紹 .............................................................. 21
2.3.3 量測和模擬結果分析 .................................................................................. 25
第三章 巴倫器結合天線及差動、單端訊號對整體系統的影響 .............................. 29
3.1 平衡和不平衡饋入之於平衡天線其天線模態的解析 ...................................... 29
3.2 倒F型天線和巴倫器的探討 ............................................................................. 36
3.2.1 倒F型天線的研究 ...................................................................................... 36
3.2.2 GIPD巴倫器整合於PCB上之研究 ........................................................... 42
3.3 應用於 PCB製程之倒F型天線結合巴倫器相關研究 ................................... 46
第四章 射頻前端電路之發射系統異質晶片整合探討 .............................................. 52
4.1 異質晶片整合之Class A功率放大器 ............................................................... 52
4.2 應用於5.8GHZ之天線和巴倫器設計以及射頻前端電路整合 ....................... 62
第五章 結論與未來工作 .............................................................................................. 70
5.1 結論 ...................................................................................................................... 70
5.2 未來工作 .............................................................................................................. 72
參考文獻 ........................................................................................................................ 73
參考文獻 References
[1] 科技產業資訊市( http://cdnet.stpi.narl.org.tw/techroom/market/eecomputer/2014/eecomputer_14_002.htm )
[2] Libelium (http://www.libelium.com/)
[3] 電磁產學聯盟 (http://temiac.ee.ntu.edu.tw/app/super_pages.php?ID=intro4&Sn=11)
[4] AnandTech (http://www.anandtech.com/show/7795/zte-announces-use-of-qualcomm-cmos-pa-as-march-towards-rf360-continues)
[5] 高通公司(Qualcomm) (http://www.qualcomm.com/chipsets/gobi/rf-solutions/qualcomm-rf360-front-end)
[6] 百度百科 (http://baike.baidu.com/view/10142708.htm#reference-[1]-10297886-wrap)
[7] IFIXIT (https://www.ifixit.com/Teardown/HTC+One+(M8)+Teardown/23615)
[8] M. Pavio and A. Kikel, “A monolithic or hybrid broadband compensated balun,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1990, pp. 483–486.
[9] J. Minnis and M. Healy, “New broadband balun structures for monolithic microwave integrated circuits,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1991, pp. 425–428.
[10] K. S. Ang, Y. C. Leong, and C. H. Lee, “Multisection impedance-transforming coupled-line baluns,” IEEE Trans. Microw. Theory Tech., vol.51, no. 2, pp. 536–541, Feb. 2003.
[11] Kuylenstierna and P. Linner, “Design of broadband lumped-element baluns with inherent impedance transformation,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2739–2745, Dec. 2004.
[12] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P. Kossives, “Design and Characterization of Multilayer Spiral Transmission-Line Baluns,” IEEE TRANS. MTT, VOL. 47, NO. 9, SEPTEMBER 1999.
[13] T. Yang, M. Tamura, and T. Itoh, “Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters,” IEEE Trans. MTT, vol. 58, no. 2, pp. 390–402, Feb. 2010.
[14] E.-Y. Jung and H.-Y. Hwang, “A balun-BPF using a dual mode ring resonator,” IEEE MWCL, vol. 17, no. 9, pp.652–654, Sept. 2007.
[15] Z.-Y. Zhang, Y.-X. Guo, L. C. Ong, and M. Y. W. Chia, “A New Wide-band Planar Balun on a Single-Layer PCB,” IEEE MWCL, VOL. 15, NO. 6, JUNE 2005.
[16] C.-I. Shie, Y.-H. Pan, K.-S. Chin, and Y.-C. Chiang, “A Miniaturized Microstrip Balun Constructed With Two λ/8 Coupled Lines and a Redundant Line,” IEEE MWCL, VOL. 20, NO. 12, DECEMBER 2010.
[17] C.-W. Tang, W.-D. Cheng, J.-W. Wu, and Y.-C. Lin, “Design of a Compact Balun With Three Octant-Wavelength Coupled Lines,” IEEE IMS, 2010.
[18] S.-M. Su, S.-M. Wu, C.-C. Lai, Y.-C. Tai, W.-Y. Lin, and S.-W. Guan “Analysis and Modeling of IPD for Spiral Inductor on Glass Substrate,” IEEE ICMMT,2008.
[19] N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp. 142–146, Dec. 1944.
[20] G.-S. Huang, C.-H. Wu, and C. H. Chen, “LTCC Balun Bandpass Filters Using Dual-Response Resonators,” IEEE MWCL, VOL. 21, NO. 9, SEPTEMBER 2011.
[21] T. Yang, M. Tamura, and T. Itoh, “Compact and high-performance low-temperature co-fired ceramic balun filter using the hybrid resonator and symmetric four-port network,” IET Microwaves, Antennas & Propagation, Vol. 6, Iss. 2, pp. 121–126, 2012.
[22] L. Xu, H. Sjöland, M. Törmänen, T. Tired, T. Pan, and X. Bai, “A Miniaturized Marchand Balun in CMOS With Improved Balance for Millimeter-Wave Applications,” IEEE MWCL, 2013.
[23] S.-M.o Wu, W.-Y. Lin, K.-Y. Wang, C.-H. Huang, and W.-K. Yeh, “ The High Balance Symmetric Balun for WLAN and WiMAX Application Using the Integrated Passive Device (IPD) Technology,” IEEE ICEPT-HDP, 2009.
[24] Jian-De Li, “A study on the compact , UWB balun by using LTCC technology,” Master’s Thesis, National Cheng Kung University, August 2006.
[25] Tzu-Chiang Wei, “Design and Modeling of Planar Transformer-based Integrated Passive Devices,” Master’s Thesis, National Sun Yat-Sen Universit, July 2008.
[26] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
[27] J. Y. Ihm and K. P. Hwang, “RF balun embedded in multilayer organic substrate,” Microw. Opt. Technol. Lett., vol. 34, no. 4, pp. 255–259, Aug. 2007.
[28] K. Liu, R. Frye, and R. Emigh, “Band-pass-filter with balun function from IPD technology,” in Proc. 58th Electron. Comp. Technol. Conf., pp. 718–723 2008.
[29] C.-H. Chen, C.-H. Huang, T.-S. Horng, S.-M. Wu, C.-T. Chiu, C.-P. Hung, J.-Y. Li, and C.-C. Chen, “Very compact transformer-coupled balun-integrated bandpass filter using integrated passive device technology on glass substrate,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, May 2010, pp. 1372–1375.
[30] C.H. Huang, C.H. Chen, and T.S. Horng, “Design of Marchand Balun of Spiral Shape Using Physical Transformer Model on Silicon Integrated Passive Device Substrate”, Radio and Wireless Symposium (RWS), 2010 IEEE, pp, 456-459
[31] H. Morishita, H. Furuuchi, and K. Fujimoto, “Performance of balance-fed antenna system for handsets in the vicinity of a human head or hand,” Proc. Inst. Elect. Eng. Microw. Antennas Propag., vol. 149, Apr. 2002, pp. 85–91.
[32] Mei Tien, “Design of Miniaturized Printed Circuit Board Antennas for 802.11n MIMO Application,” Master’s Thesis, National Sun Yat-Sen University, June 2011.
[33] M. Tein, and L.-T. Hwang, “Miniature Loop Antennas with Balanced and Unbalanced Feeds,” Proc. APMC, 2011.
[34] C.A. Balanis, Antenna Theory Analysis and Design 3rd edition, John Wiley & Sons, Inc., 2005.
[35] Y.P. Chung, “Design of a Class-A Cascode Configured Power Amplifier at 5.8GHz,” Master’s Thesis, National Sun Yat-Sen University, Aug. 2013. [36] C. C. Wang, H. A. Yang, Y. C. Shyu, M. H. Li, C. T. Chiu, S. M. Wu, C. W. Kuo and C. P. Hung, “Analysis of high performance RF integrated passive circuits using the glass substrate,”Proc. IEEE 9th VLSI Packag. Workshop Jpn., pp.135 -138, 2008.
[37] H. K. Chen, Y. C. Hsu, T. Y. Lin, D. C. Chang, Y. Z. Juang and S. S. Lu, “CMOS wideband LNA design using integrated passive device,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2009, pp.673–676.
[38] 邱靖玉,La(2-x)/3NaxTiO3與Nd(2-x)/3LixTiO3微波陶瓷材料之拉曼光譜與延伸X光吸收精細結構,國立臺灣師範大學物理學系,2008。
[39] C. H. Chang, and K. L. Wong, “Printed λ/8-PIFA for Penta-Band WWAN Operation in the Mobile Phone,” IEEE Trans. AP, Vol. 57, No. 5, MAY 2009.
[40] 謝昕峯,基於近場量測技術之晶片層級電磁干擾研究,國立中山大學電機工程學系碩士論文,2012。
[41] S. L. Chen, K. H. Lin, and R. Mittra, "A measurement technique for verifying the match condition of assembled RFID tags," IEEE Trans. Instrum. Meas., Dec. 2009.
[42] D. M. Pozar, Microwave and RF Design of Wireless Systems, Norwood, MA:John Wiley & Sons, Inc., 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.128.129
論文開放下載的時間是 校外不公開

Your IP address is 3.17.128.129
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code