Responsive image
博碩士論文 etd-0622114-180044 詳細資訊
Title page for etd-0622114-180044
論文名稱
Title
芝麻素對人類單核球細胞表現氣喘相關趨化激素之影響及其表觀基因調控機制
Sesamin Suppresses Macrophage-derived Chemokine Expression in Human Monocytes via Epigenetic Regulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-03
繳交日期
Date of Submission
2014-07-22
關鍵字
Keywords
氣喘、單核球細胞、芝麻素、表觀基因、巨噬細胞衍生趨化激素、趨化激素
asthma, monocytes, sesamin, epigenetics, CCL22, chemokine
統計
Statistics
本論文已被瀏覽 5683 次,被下載 852
The thesis/dissertation has been browsed 5683 times, has been downloaded 852 times.
中文摘要
趨化激素(chemokines)在氣喘的發病機制中扮演著重要的角色。芝麻素(sesamin)是一種從芝麻種子中純化出來的植物雌激素,在一些研究中發現與抗發炎有關,但芝麻素對氣喘相關的趨化激素是否有影響仍屬未知,本研究澄清芝麻素對人類單核球細胞表現干擾素γ誘導蛋白10(interferon-γ-inducible protein-10,IP-10/CXCL10)、巨噬細胞衍生趨化激素(macrophage-derived chemokine,MDC/CCL22)、生長相關癌基因α(growth-related oncogene-α,GRO-α/ CXCL1)和腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)的影響。首先以芝麻素對細胞進行前處理,之後再以細菌脂多醣(lipopolysaccharide,LPS)刺激,利用酵素免疫分析法(ELISA)測定IP-10、MDC、GRO-α、TNF-α的濃度。為確認其調控機制,進行細胞表面受體之拮抗劑及細胞內路徑抑制劑、西方墨點分析(Western blot)和染色質免疫沉澱(chromatin immunoprecipitation,ChIP)等研究。結果顯示芝麻素抑制了MDC的表現,但對IP-10,GRO-α和TNF-α的表現沒有影響。給予雌激素受體(estrogen receptor,ER)拮抗劑和過氧化物酶體增殖物激活受體(peroxisomal proliferators-activated receptor,PPAR)-α拮抗劑會使被抑制的MDC表現回復。芝麻素可抑制細胞絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)中p38和核因子κB(nuclear factor κB,NFκB)中p65的磷酸化,亦可抑制組蛋白H3/H4在MDC啟動子區域的乙烯化。芝麻素可藉由通過ER/ PPAR-α,MAPK-p38和NFκB-p65的路徑抑制MDC的表現和表觀基因調控而抑制氣喘的發病。
Abstract
Certain chemokines play important roles in asthma. Sesamin has anti-inflammatory effects. Whether sesamin modulates asthma-related chemokines is unknown. We investigated the effects of sesamin on interferon-γ-inducible protein-10 (IP-10/CXCL10), macrophage-derived chemokine (MDC/CCL22), growth-related oncogene-α (GRO-α/CXCL1) and tumor necrosis factor (TNF)-α expression in human monocytes. Cells were pretreated with sesamin and then stimulated with lipopolysaccharide (LPS). IP-10, MDC, GRO-α and TNF-α were measured by ELISA. Mechanisms were investigated by receptor antagonists, pathway inhibitors, Western blotting and chromatin immunoprecipitation. Sesamin suppressed the expression of MDC but had no effects on IP-10, GRO-α and TNF-α expression. The suppressive effect was reversed by the estrogen receptor (ER) and peroxisomal proliferators-activated receptor (PPAR)-α antagonists. Sesamin suppressed phosphorylation of mitogen-activated protein kinase (MAPK)-p38 and nuclear factor κB (NFκB)-p65. Sesamin suppressed histone H3/H4 acetylation in MDC promoter region. Sesamin may suppress asthmatic inflammation by suppressing MDC expression via the ER/PPAR-α, the MAPK-p38 pathway and the NFκB-p65 pathway and the epigenetic regulation.
目次 Table of Contents
論文審定書……....…………………………………………….…...…...…i
致謝……………………………………..………..........…………...……..ii
中文摘要……………………………………………………….…....……iv
英文摘要……………………………………..……………………......…..v
第 一 章 前言…………………………………………………..……....1
1.1 簡介………………………………………………………......…..1
1.2 單核球細胞(monocyte)…………………………………..…..2
1.3 芝麻素(sesamin)……………………………………..……….4
1.4 MAPKs及NFκB細胞訊息傳遞路徑……………….…………..6
1.5 組蛋白修飾(histone modification)……….…………………..7
第 二 章 研究目的………………………………..……………………9
第 三 章 材料與方法………………………………………..………..11
3.1 細胞培養...…………………………………………....................11
3.2 芝麻素的來源及配製…………………………….......................13
3.3 細胞存活率(Cell viability assay)……………........................14
3.4 酵素免疫分析法(Enzyme-linked immunosorbent assay,ELISA)…………………………………………………………..14
3.5 西方墨點分析法(Western blotting)……………………..….....15
3.6 染色質免疫沉澱法(Chromatin immunoprecipitation assay,ChIP).................................................................................................................17
3.7 聚合酶鏈鎖反應(polymerase chain reactio,PCR).....................18
3.8 數據統計分析................................................................................19
第 四 章 結果……………..…………………………………………..20
4.1 芝麻素會抑制LPS刺激後THP-1和human primary monocytes 表現MDC..................................................................................20
4.2 芝麻素對THP-1沒有細胞毒殺作用……………………..….21
4.3 芝麻素是經由ER和PPAR-α表面受體而抑制LPS誘導表現的MDC……………..…………………………………….…...22
4.4 MAPK抑制劑和NFκB抑制劑皆可抑制LPS誘導產生的MDC…………………………………………………………...22
4.5 芝麻素抑制LPS誘導人類單核球細胞表現的MDC是經由MAPK-p38和NFκB-p65訊息傳遞路徑………………...…...23
4.6 芝麻素經由抑制NFκB相關的乙醯轉移酶CBP抑制histone acetylation而使LPS誘導表現的MDC被抑制…………….24
第 五 章 討論………………………………………..……………..…26
第 六 章 結論……………………………………………..…………..32

參考文獻……………………………………………………...………….42
附錄………………………………………………………..……………..51
參考文獻 References
1. Latvala J, von Hertzen L, Lindholm H, Haahtela T. Trends in prevalence of asthma and allergy in Finnish young men: nationwide study, 1966-2003. BMJ 2005;330:1186-1187.
2. Hsieh KH, Shen JJ. Prevalence of childhood asthma in Taipei, Taiwan, and other Asian Pacific countries. J Asthma 1988;25:73-82.
3. Worldwide variations in the prevalence of asthma symptoms: the International Study of Asthma and Allergies in Childhood (ISAAC). Eur Respir J 1998;12:315-335.
4. Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK, Williams H; ISAAC Phase Three Study Group. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006; 368:733-743.
5. Busse WW, Lemanske RF, Jr. Asthma. N Engl J Med 2001;344:350-362.
6. Smit JJ, Lukacs NW. A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol 2006;533:277-288.
7. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010;327:656-661.
8. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV. T-helper type 2–driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 2009;180:388-395.
9. Viallard JF, Pellegrin JL, Ranchin V, Schaeverbeke T, Dehais J, Longy-Boursier M, Ragnaud JM, Leng B, Moreau JF. Th1 (IL-2, interferon-gamma (IFN-γ)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 1999;115:189-195.
10. Rosloniec EF, Latham K, Guedez YB. Paradoxical roles of IFN-γ in models of Th1-mediated autoimmunity. Arthritis Res 2002;4:333-336.
11. Nakajima H, Takatsu K. Role of Cytokines in Allergic Airway Inflammation. Int Arch Allergy Immunol 2007;142:265-273.
12. Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Buonsanti C, Miotto D, Mapp C, Villa A, Arrigoni G, Fabbri LM, Sinigaglia F. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 2001;107:1357-1364.
13. Leung TF, Wong GW, Ko FW, Lam CW, Fok TF. Increased macrophage-derived chemokine in exhaled breath condensate and plasma from children with asthma. Clin Exp Allergy 2004;34:786-791.
14. Medoff BD, Sauty A, Tager AM, Maclean JA, Smith RN, Mathew A, Dufour JH, Luster AD. IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. J Immunol 2002;168:5278-5286.
15. Bochner BS, Hudson SA, Xiao HQ, Liu MC. Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 2003;112:930-934.
16. Kikuchi S, Kikuchi I, Takaku Y, Kobayashi T, Hagiwara K, Kanazawa M, Nagata M. Neutrophilic inflammation and CXC chemokines in patients with refractory asthma. Int Arch Allergy Immunol 2009;149 Suppl 1:87-93.
17. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, Bradding P, Brightling CE, Wardlaw AJ, Pavord ID. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006;354:697-708.
18. Kawaguchi M, Kokubu F, Matsukura S, Ieki K, Odaka M, Watanabe S, Suzuki S, Adachi M, Huang SK. Induction of C-X-C chemokines, growth-related oncogene alpha expression, and epithelial cell-derived neutrophil-activating protein-78 by ML-1 (interleukin-17F) involves activation of Raf1-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2 pathway. J Pharmacol Exp Ther 2003;307:1213-1220.
19. Qiu Y, Zhu J, Bandi V, Guntupalli KK, Jeffery PK. Bronchial mucosal inflammation and upregulation of CXC chemoattractants and receptors in severe exacerbations of asthma. Thorax 2007;62:475-482.
20. Kamal-Eldin A, Pettersson D, Appelqvist LA. Sesamin (a compound from sesame oil) increases tocopherol levels in rats fed ad libitum. Lipids 1995;30:499-505.
21. Ide T, Ashakumary L, Takahashi Y, Kushiro M, Fukuda N, Sugano M. Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the down-regulation of sterol regulatory element binding protein-1. Biochim Biophys Acta 2001;1534:1-13.
22. Sirato and Takahashi. Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 2001;49:2647-2651.
23. Hsu DZ, Liu MY. Sesame oil attenuates multiple organ failure and increase survival rate during endotoxemia in rats. Crit Care Med 2002;30:1859-1862.
24. Hsu DZ, Liu MY. Effects of sesame oil on oxidative stress after the onset of sepsis in rats. Shock 2004;22:582-585.
25. Akimoto K, Kitagawa Y, Akamatsu T, Hirose N, Sugano M, Shimizu S, Yamada H. Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann Nutr Metab 1993;37:218-224.
26. Olsen A, Knudsen KE, Thomsen BL, Loft S, Stripp C, Overvad K, Møller S, Tjønneland A. Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol Biomarkers Prev 2004;13:2084-2089.
27. Jansen GH, Arts IC, Nielen MW, Müller M, Hollman PC, Keijer J. Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells. Arch Biochem Biophys 2005;435:74-82.
28. Limer JL, Speirs V. Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Res 2004;6:119-127.
29. Svjetlana M, Monika M, Alois J. Potential Health-modulating Effects of Isoflavones and Metabolites via Activation of PPAR and AhR. Nutrients 2010;2:241-279.
30. Ashakumary L, Rouyer I, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hashimoto T, Mizugaki M, Sugano M. Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism 1999;48:1303-1313.
31. Li Q, Valerio MS, Kirkwood KL. MAPK usage in periodontal disease progression. J Signal Transduct 2012;2012:308943.
32. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999;79:143-180.
33. Nakahara T, Moroi Y, Uchi H, Furue M. Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 2006;42:1-11.
34. Roberts PJ and Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291-3310.
35. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene 2006;25:6680-6684.
36. Brasier AR. The NF-κB regulatory network. Cardiovasc Toxicol 2006;6:111-130.
37. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 2007;8:49-62.
38. Gilmore TD. The Rel/NF-κB signal transduction pathway: introduction. Oncogene 1999;18:6842-6844.
39. Tian B, Brasier AR. Identification of a nuclear factor κ B-dependent gene network. Recent Prog Horm Res 2003;58:95-130.
40. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998;16:225-260.
41. Ghosh S, Gifford AM, Riviere LR, Tempst P, Nolan GP, Baltimore D. Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell 1990;62:1019-1029.
42. Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci USA 2004;101:5634-5639.
43. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 2001;107:241-246.
44. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995;13:437-457.
45. Hung CH, Suen JL, Hua YM, Chiang W, Chang HC, Chen CN, Jong YJ. Suppressive effects of ketotifen on Th1- and Th2-related chemokines of monocytes. Pediatr Allergy Immunol 2007;18:378-384.
46. Ding SZ, Fischer W, Kaparakis-Liaskos M, Liechti G, Merrell DS. Helicobacter pylori-Induced Histone Modification, Associated Gene Expression in Gastric Epithelial Cells, and Its Implication in Pathogenesis. PLoS ONE 2010;5:e9875.
47. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 2005;25:552-563.
48. Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, Meuer SC, Stallmach A. Expression of Interleukin-12-related Cytokine Transcripts in Inflammatory Bowel Disease: Elevated Interleukin-23pl9 and Interleukin-27p28 in Crohn's Disease but not in Ulcerative Colitis. Inflamm Bowel Dis 2005;11:16-23.
49. Berger SL. The complex language of chromatin regulation during transcription. Nature 2007;447:407-412.
50. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007;128:707-719.
51. Poole E, Atkins E, Nakayama T, Yoshie O, Groves I, Alcami A, Sinclair J. NF-kappaB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J Virol 2008;82:4250-4256.
52. Hung CH, Li CY, Lai YS, Hsu PC, Hua YM, Yang KD. Discrepant clinical responses and blood chemokine profiles between two non-steroidal anti-inflammatory medications for children with mild persistent asthma. Pediatr Allergy Immunol 2005;16:306-309.
53. Hou RC, Chen HL, Tzen JT, Jeng KC. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. Neuroreport 2003;14:1815-1819.
54. Jeng KC, Hou RC, Wang JC, Ping LI. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol Lett 2005;97:101-106.
55. Lee WJ, Ou HC, Wu CM, Lee IT, Lin SY, Lin LY, Tsai KL, Lee SD, Sheu WH. Sesamin mitigates inflammation and oxidative stress in endothelial cells exposed to oxidized low-density lipoprotein. J Agric Food Chem 2009;57:11406-11417.
56. Wu WH, Wang SH, Kuan, II, Kao YS, Wu PJ, Liang CJ, Chien HF, Kao CH, Huang CJ, Chen YL. Sesamin attenuates intercellular cell adhesion molecule-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in apolipoprotein-E-deficient mice. Mol Nutr Food Res 2010;54:1340-1350.
57. Cui Y, Hou X, Chen J, Xie L, Yang L, Le Y. Sesamin inhibits bacterial formylpeptide-induced inflammatory responses in a murine air-pouch model and in THP-1 human monocytes. J Nutr 2010;140:377-381.
58. Chavali SR, Zhong WW, Utsunomiya T, Forse RA. Decreased production of interleukin-1-beta, prostaglandin-E2 and thromboxane-B2, and elevated levels of interleukin-6 and -10 are associated with increased survival during endotoxic shock in mice consuming diets enriched with sesame seed oil supplemented with Quil-A saponin. Int Arch Allergy Immunol 1997;114:153-160.
59. Chavali SR, Utsunomiya T, Forse RA. Increased survival after cecal ligation and puncture in mice consuming diets enriched with sesame seed oil. Crit Care Med 2001;29:140-143.
60. Ghadially H, Ross XL, Kerst C, Dong J, Reske-Kunz AB, Ross R. Differential regulation of CCL22 gene expression in murine dendritic cells and B cells. J Immunol 2005;174:5620-5629.
61. Kuo CH, Ko YC, Yang SN, Chu YT, Wang WL, Huang SK, Chen HN, Wei WJ, Jong YJ, Hung CH. Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation. J Mol Med (Berl) 2011;89:29-41.
62. Kuo CH, Lin CH, Yang SN, Huang MY, Chen HL, Kuo PL, Hsu YL, Huang SK, Jong YJ, Wei WJ, Chen YP, Hung CH. Effect of prostaglandin I2 analogs on cytokine expression in human myeloid dendritic cells via epigenetic regulation. Mol Med 2012;18:433-444.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code