Responsive image
博碩士論文 etd-0622114-215059 詳細資訊
Title page for etd-0622114-215059
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及對含鉻化合物之分析應用
Determination of arsenic species in seaweeds and chromium species by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-07-22
關鍵字
Keywords
感應耦合電漿質譜儀、含鉻化合物、含砷化合物、液相層析
Chromium, Arsenic, HPLC, ICP-MS
統計
Statistics
本論文已被瀏覽 5715 次,被下載 598
The thesis/dissertation has been browsed 5715 times, has been downloaded 598 times.
中文摘要
微量元素與人體的健康息息相關,而元素可以以不同氧化數及化合物所組成不同之物種型態,其對於生物體的毒性程度也有所差異,除了對於元素的總濃度進行測定外,對於其型態與含量分析結果也希望能更了解,以提供完整的樣品資訊。使用高效能液相層析(High Performance Liquid Chromatography,HPLC)結合感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectroscopy,ICP-MS)進行偵測,因其具有高靈敏度、線性範圍廣以及同時進行多元素偵測等優點,搭配前者的物種分離,能夠以現有的標準品定量未知物種,並利用電噴灑質譜儀(Electrospray Ionization Mass Spectrometry,ESI-MS)對於物種的化合物結構進行分析,獲得定性及定量上的更完整資訊。
第一部分研究,使用陰離子交換樹脂 (Anion-exchange chromatography)作為管柱,以碳酸銨作為動相分離海洋藻類中含砷化合物,將含有砷醣(Arsenosuger)的海帶頭萃取液中添加入砷標準品,探討出最適化的液相層析條件,能在一支管柱將Arsenocholine、Arsenobetaine、OH-arsenoribose、As(III)、Dimethylarsinic acid、PO4-arsenoribose、Monomethylarsonic acid、SO3H-arsenoribose、As(V)、trialkylarsonioribosides 十種砷物種於19分鐘內分離,並且使用動態反應槽(Dynamic Reaction Cell)去除高鹽類樣品的氯離子在分析中所形成的ArCl+對於砷的光譜干擾,在最適化條件下,砷的偵測極限範圍介於0.006到0.018 ng mL-1 之間。
將此方法應用在分析BCR-279 ulva lactuca以及不同市售海洋藻類樣品,在真實樣品中的含砷未知物以液相層析連接電噴灑質譜儀系統 (HPLC-ESI-MS) 鑑定未知物,經過一次質譜和二次質譜的鑑定後,為OH-arsenoribose、PO4-arsenoribose
、SO3H-arsenoribose三種砷糖。
第二部分研究,以逆相層析法(Reverse phase chromatography)結合結合感應耦合電漿質譜儀對Cr(III)-EDTA與Cr(VI)進行分析。本篇層析系統利用含有Tetra-n-butylammonium phosphate (TBAP)做為離子對試劑以及Disodium ethylenediamine teraacetic acid (EDTA) 做為Cr(III)的螯合試劑,並幫助鉻的分離,在動相pH=6.9的環境下沖提C8管柱。為了減輕鉻在偵測時來自ArC的光譜干擾,選用NH3作為動態反應槽的反應氣體。在最適化條件下,本系統可以在2分鐘內分離鉻物種,鉻的偵測極限範圍為0.052與0.054 ng mL-1,鉻物種的波峰高度與波峰面積的在現性皆優於3.7 % (n=5)。選用NRCC SLRS-4 River Water作為標準參考樣品對於系統方法做確效,樣品選擇以商店所販售之酒類與藥局販售之營養補充即飲品。以簡單震盪處理樣品後即進入本系統中分析,其回收率介於89-98%之間,在樣品處理前加入標準品,確認物種不會因震盪而造成物種轉換,經計算後回收率介於92-98%之間,證實不會於震盪處理樣品時造成物種轉換。在實驗結果表示,酒類與營養補充即飲品內含有較多的有機鉻物種,其次為Cr(III)-EDTA與Cr(VI)。
Abstract
In the first study, speciation of arsenic in seaweeds was carried out using ion chromatography (IC) for separation and inductively coupled mass spectrometry (ICP-MS) for detection. The arsenic species studied were arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobeta-
ine (AsB), arsenocholine (AsC), OH-arsenoribose (OH-AsR), PO4-arsenoribose (PO4- AsR) , SO3H-arsenoribose (SO3H - AsR), and trialkylarsonioribosides (Trialkyl-AsR). Chromatographic separation of all the species was achieved in <19 min in gradient elution mode using (NH4)2CO3 at pH 8.7. Since there was not standard of arsenosugar, in the experiment used extraction of Laminaria japonica Areschoug spiked [As(III)], [As(V)], MMA, DMA, AsB, AsC. The outlet of the IC column was directly connected to the nebulizer of ICP-MS for the determination of arsenic. The speciation of arsenic has been carried out in several seaweed samples. A microwave-assisted extraction method was used for the extraction of arsenic species from seaweed samples. With a mixture of mobile phase A and methanol as extractant, the extraction efficiency was >73%, and the recoveries from spiked samples were in the range of 93−109%. The unknown compounds detected in different seaweeds were identified by coupling IC directly with electrospray ionization−mass spectrometry (ESI-MS). Four arsenosugars and tetramethylarsonium ion (TMA) were identified in different seaweeds. A fat-
soluble arsenolipid compound was identified in the extract of certified reference material BCR-279 Ulva lactuca when 1% HNO3 was used as the extractant.
Second study, A HPLC separation procedure has been developed for the specia-
tion of Cr(III), Cr(VI) in wine and diabetic supplement drinks samples. The species were separated on a reversed phase column (C8) in gradient elution mode. The mobile phase consisting of EDTA and TBAP in methanol at pH 6.9, yielded well resolved chromatograms of all the species within 2 min. The analyses were carried out using dynamic reaction cell inductively coupled plasma-mass spectrometer (DRC-ICP-MS). The DRC conditions have also been optimized to obtained interference free measure-
ments of 52Cr+ and 53Cr+, which were otherwise interfered by: 35Cl16O1H+, 35Cl17O+, 40Ar12C+ on 52Cr+; and 37Cl16O+, 40Ar13C+, 40Ar12C1H+ on 53Cr+. The detection limits of the procedure were 0.052 ng 52Cr ml-1 and 0.054 ng 53Cr ml-1. The accuracy of the method has been validated by comparing the sum of the concentrations obtained for individual species with total concentration of the elements in NRCC SLRS-4 River Water. The method has also been applied on several real samples, included environmental water, wine and supplement drinks, in which case the comparison total chromium concentration. Supplement drinks has been made with total concentrations determined after complete dissolution of the samples. The species were separated by HPLC-DRC-ICP-MS in appropriate dilute.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xi
縮寫表 xiii

第一章 液相層析結合感應耦合電漿質譜儀於海洋藻類樣品中砷物種分析之應用
壹、前言 1
貳、動態反應槽(Dynamic Reaction Cell,DRC) 6
參、實驗部分 8
一、儀器裝置 8
二、試藥與溶液配製 9
肆、實驗過程 12
一、液相層析條件最適化探討 12
二、DRC-ICP-MS 系統最適化探討 12
三、再現性 14
四、校正曲線與偵測極限的估計 14
五、萃取條件 15
六、真實樣品分析 15
伍、結果與討論 18
一、液相層析條件最適化探討 18
二、DRC-ICP-MS 系統最適化探討 24
三、再現性 36
四、校正曲線與偵測極限的估計 36
五、真實樣品分析 36
陸、結論 58
柒、參考文獻 59
第二章 液相層析結合感應耦合電漿質譜儀對於鉻物種分析之應用
壹、前言 63
貳、實驗部分 66
一、儀器裝置 66
二、藥品與溶液之配製 66
參、實驗流程 68
一、液相層析條件最適化探討 68
二、DRC-ICP-MS系統最適化探討 68
三、再現性 70
四、校正曲線與偵測極限的估計 70
五、真實樣品分析 70
肆、結果與討論 73
一、液相層析最適化探討 73
二、DRC-ICP-MS系統最適化條件 75
三、再現性 87
四、校正曲線與偵測極限的估計 87
伍、結論 107
陸、參考文獻 108
參考文獻 References
第一章 液相層析結合感應耦合電漿質譜儀於海洋藻類樣品中砷物種分析之應用
1. Chen, H. W., Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull. Environ. Contam. Toxicol. 2007, 78 (2), 113-117.
2. Whitmore, T. J.; Riedinger-Whitmore, M. A.; Smoak, J. M.; Kolasa, K. V.; Goddard, E. A.; Bindler, R., Arsenic contamination of lake sediments in Florida: evidence of herbicide mobility from watershed soils. Journal of Paleolimnology 2008, 40, 869-884.
3. Bailey, J. E., Studies Evaluating the Impact of Surface Coatings on the Level of Dislodgeable Arsenic, Chromium and Copper from Chromated Copper Arsenate (CCA)-Treated Wood. 2007.
4. Qi, Y. O.; Donahoe, R. J., The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ., 2008, 405, 246-254.
5. Choonga, T. S. Y.; Chuaha, T. G.; Robiaha, Y.; Gregory Koaya, F. L.; Azni, I., Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 2007, 217, 139-166.
6. Wai, C. M.; Wang, J. S.; Yang, M. H., Arsenic contamination of groundwater, Blackfoot disease, and other related health problems. Biogeochemistry of Environmentally Important Trace Elements, 2003, 835, 210-231.
7. Yang, G.; Xuan, C.; Yu, J. J.; Lee, F. S.; Wang, X. R., Determination of arsenic and it’s species in dry seafood by high performance liquid chromatography inductively coupled plasma mAsR spectrometry. Chin. J. Anal. Chem., 2009, 37, 1738-1742.
8. Sakurai, T.; Kaise, T.; Ochi, T.; Saitoh, T.; Matsubara, C., Study of in vitro cytotoxicity of a water soluble organic arsenic compound, arsenosugar, in seaweed. Toxicology 1997, 122 (3), 205-212.
9. Reyes, L. H.; Mar, J. L. G.; Rahman, G. M. M.; Seybert, B.; Fahrenholz, T.; Kingston, H. M. S., Simultaneous determination of arsenic and selenium species in fish tissues using microwave-AsRisted enzymatic extraction and ion chromatography-inductively coupled plasma mAsR spectrometry. Talanta 2009, 78, 983-990.
10. Kaise, T.; Fukui, S., The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl. Organomet. Chem., 1992, 6, 155-160.
11. Styblo, M.; Hughes, M. F.; Thomas, D. J., Liberation and analysis of protein-bound arsenicals. J. Chromatogr. B 1996, 677 (1), 161-166.
12. Le, X. C.; Lu, X. F.; Ma, M. S.; Cullen, W. R.; Aposhian, H. V.; Zheng, B. S., Speciation of key arsenic metabolic intermediates in human urine. Anal. Chem., 2000, 72, 5172-5177.
13. Schmidt, A. C.; Reisser, W. ; Mattusch, J.; Popp, P.; Wennrich, R., Evaluation of extraction procedures for the ion chromatographic determination of arsenic species in plant materials, Journal of Chromatography A, 2000, 889, 83-91.
14. Parsons, P. J.; Ito, K.; Palmer, C. D.; Steuerwald, A. J., Determination of five arsenic species in whole blood by liquid chromatography coupled with inductively coupled plasma mAsR spectrometry. J. Anal. At. Spectrom. 2010, 25, 1334-1342.
15. Borak, J.; Hosgood, H. D., Seafood arsenic: Implications for human risk AsRessment. Regulatory Toxicology and Pharmacology, 2007, 47, 204-212.
16. Zhang,W. D., Arsenic Speciation and Food Safety in Seafoods, Chinese Journal Of Food Hygiene, 2007, 19, 345-350.
17. Caumette, G.; Koch, I.; Reimer, K. J., Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain, J. Environ. Monit., 2012, 14, 2841-2853.
18. Hansen, H. R.; Pickford, R.; Thomas-Oates, J.; Jaspars, M.; Feldmann, J., 2-dimethylarsinothioyl acetic acid identified in a biological sample: The first occurrence of a mammalian arsinothioyl metabolite. Angew. Chem. 2004, 43, 337-340.
19. Anita, E. G.; Walter, G.; Walter, K., An arsenosuger as the major extracrable arsenical in the earthworm Lumbricus terrestris. Appl Organometal. Chem., 2002, 16, 473-476.
20. Zhu, Y. E.; Li, J.; Li, S. M., The speciation and contents of arsenic in some algae from different regions, Environmental Chemistry, 2005,24, 478-480.
21. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F., Dynamic reaction cell ICP-MS for determination of tota l As, Cr, Se and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698 (1-2), 6-13.
22. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim Acta B, 2002, 57, 1361-1452.
23. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively Coupled Plasma MAsR Spectrometer with Axial Field in a Quadrupole Reaction Cell. J. Am. Soc. MAsR. Spectrom. 2002, 13 (10), 1176-1185.
24. Suner, M. A.; Devesa, V.; Munoz, O.; Velez, D.; Montoro, R., Application ofcolumn switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples. J. Anal. At. Spectrom.2001, 16, 390-397.
25. Leermakers, M.; Baeyens, W.; Gieter, M. D.; Smedts, B.; Meert, C.; Bisschop, H. C.; Morabito, R.; Quevauviller, P., Toxic arsenic compounds in environmental samples: Speciation and validation. Trends Anal. Chem. 2006, 25 (1), 1-10.
26. 賴珮珊. 感應耦合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用. 國立中山大學, 高雄市, 2004.
27. 朱韻菱. 液相層析結合感應耦合電漿質譜儀於環境樣品中鉈及食用油中砷物種分析之應用. 國立中山大學, 高雄市, 2010.
28. 蔡瑤璇. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於食用藻類中砷物種與水樣及果汁中銻物種之分析應用. 國立中山大學, 高雄市, 2013.
29. Stephane, S.; Huong, T.; Florence, P.; Martine, P. G., Simultaneous determination of twelve inorganic and organic arsenic compounds by liquid chromatography -ultraviolet irradiation-hydride generation atomic fluorescence spectrometry. J. Chromatogr. A., 2004, 1025, 105-113.
30. Pick, D.; Leiterer, M; Einax, J. W., Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS. Microchem. J., 2010, 95, 315-319.
31. Wolle, M. M.; Mizanur Rahman, G. M.; Kingston, S.; Pamuku, M., Speciation analysis of arsenic in prenatal and children's dietary supplements using microwave-enhanced extraction and ion chromatography–inductively coupled plasma mAsR spectrometry. Analytica Chimica Acta. , 2014, 818, 23-31
32. Gamble, B. M.; Gallagher, P. A.; Shoemaker, J. A.; Wei, X.; Schwegel, C. A.; Creed, J. T., An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC-ICP-MS and IC-ESI-MS/MS. Analyst, 2002, 127, 781-785.
33. Feldmann, J.; Amayo, K. O.; Petursdottir, A.; Newcombe, C.; Gunnlaugsdottir, H.; Raab, A.; Krupp, E. M., Identification and Quantification of Arsenolipids Using Reversed-Phase HPLC Coupled Simultaneously to High-Resolution ICPMS and High-Resolution Electrospray MS without Species-Specific Standards. Anal. Chem. 2011, 83, 3589-3595.
34. Foster, S.; Maher, W.; Krikowa, F.; Apte, S., A microwave-AsRisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71, 537-549.
35. Hsieh, Y. J.; Jiang, S. J., Application of HPLC-ICP-MS and HPLC-ESI-MS Procedures for Arsenic Speciation in Seaweeds. J. Agric. Food Chem. 2012, 60 (9), 2083-2089.
36. Foster, S.; Maher, W.; Krikowa, F.; Apte, S., A microwave-AsRisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71, 537-549.
37. Raab, A.; Fecher, P.; Feldmann, J., Determination of arsenic in algae - Results of an interlaboratory trial: Determination of arsenic species in the water-soluble fraction. Microchim. Acta 2005, 151, 153-166.
38. Virender, K. S.; Mary, S., Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743-759.
39. Rahma, M. A.; Hasegawa, H.; Lim R. P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118-135.

第二章 液相層析結合感應耦合電漿質譜儀對於鉻物種分析之應用
1. Offenbancher, E. C.; Pisunyer, F. X. Improvement of Glucose-Tolerance and Blood-Lipids in Elderly Subjects Given Chromium-Rich Yeast. Am. J. Clin. Nutr. 1980, 28, 916.
2. Zetic, V.G.; Stehlik-Tomas, V.; Grba, S.; Lutilsky, L.; Kozlek, D. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. J. Biosci. 2001, 26, 217-223.
3. Ravina, A.; Slezak, L.; Rubal, A.; Mirsky, N., Clinical use of the trace element chromium(III) in the treatment of diabetes mellitus. J. Trace Elem. Exp. Med. 1995, 8, 183-190.
4. Cheung, K. H.; Gu, J. D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review Int Biodeter Biodegr 2007, 59, 8-15.
5. Li, Y.; Xue, H., Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim. Acta 2001, 448 (1-2), 121-134.
6. Séby, F.; Charles, S.; Gagean, M.; Garraaud, H.; Donard, O. F. X., Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry— study of the influence of interfering ions. J. Anal. At. Spectrom. 2003, 18 (11), 1386-1390.
7. Chen, Z. L.; Naidu, R.; Subramanian, A. Separation of chromium(III) and chromium(VI) by capillary electrophoresis using 2,6-pyridinedicarboxylic acid as a pre-column complexation agent. J. Chromatogr. A 2001, 927, 219-227.
8. Byrdy, F. A.; Olaon, L. K.; Vela, N. P.; Caruso, J. A. Chromium Speciation by Anion-Exchange High Performance Liquid-Chromatography with Both Inductively-Coupled Plasma-Atomic Emission Spectroscopic and Inductively-Coupled Plasma-Mass Spectrometric Detection. J. Chromatogr. A 1995, 712, 311-320.
9. Gürleyük, H.; Wallschläger, D., Determination of chromium(III) and chromium(VI) using suppressed ion chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (9), 926-930.
10. Rai, D.; Sass, B.M.; Moore, D.A. Chromium(III) hydrolysis constant and solubility of Chromium(III) Hydroxide. Inorg. Chem. 1957, 26(3), 345-349.
11. Vanhaecke, F.; Saverwyns, S.; Wannemacker, G.D.; Moens, L.; Dams, R. Comparison of the application of higher mass resolution and cool plasma conditions to avoid spectral interferences in Cr(III)/Cr(VI) speciation by means of high-performance liquid chromatography –inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2000, 419, 55-64.
12. Threeprom, J.; Purachaka, S.; Potipan, L., Simultaneous determination of Cr(III)–EDTA and Cr(VI) by ion interaction chromatography using a C18 column. J. Chromatogr. A 2005, 1073 (7), 291-295.
13. Meng, Q.; Fan, Z. T.; Buckley, B.; Lin, L.; Huang, L.; Yu, C. H.; Stiles, R.; Bonanno, L. Development and evaluation of a method for hexavalent chromium in ambient air using IC-ICP-MS. Atmos. Environ. 2011, 45, 2021-2027.
14. Cox, A. G.; Cook, I. G.; Mcleod, C.W., Rapid Sequential Determination of Chromium(III) - Chromium(VI) by Flow-Injection Analysis - Inductively Coupled Plasma Atomic-Emission Spectrometry. Analyst 1985, 110, 331-333.
15. Lintschinger, J.; Kalcher, K.; Gössler, W.; Kölbl, G.; Novic, M., Simultaneous determination of chromium (III) and chromium (VI) by reversed-phase ion-pair HPLC with chromium-specific detection. Fresenius J. Anal. Chem. 1995, 351 (7), 604-609.
16. Bednar, A. J.; Kirgan, R. A.; Jones, W.T. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC–ICP–MS. Anal. Chim. Acta 2009, 632, 27-34.
17. Ambushe, A. A.; McCrindle, R. I. McCrindle, C. M. E., Speciation of chromium in cow’s milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24 (4), 502-507.
18. Nixon, D.; Neubauer, K. R.; Eckdahl, S. J. Butz, J. A.; Burritt, M. F. Evaluation of a tunable bandpass reaction cell for an inductively coupled plasma mass spectrometer for the determination of chromium and vanadium in serum and urine. Spectrochim. Acta, Part B , 2002, 57, 951-966.
19. Barałkiewicz, D.; Pikosz,B.; Belter, M. Marcinkowska, M. Speciation analysis of chromium in drinking water samples by ion-pair reversed-phase HPLC–ICP-MS: validation of the analytical method and evaluation of the uncertainty budget. Accred Qual Assur, 2013, 18, 391-401.
20. Stanislawska, M.; Janasik, B.; Wasowicz, W. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace. Talanta 2013, 117, 14-19.
21. Chang, Y. L.; Jiang, S. J. Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 858-862.
22. Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y., Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 2010, 81 (4-5), 1856-1860.
23. Xing, L.; Beauchemin, D. Chromium speciation at trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma mass spectrometry with collision/reaction interface. J. Anal. At. Spectrom., 2010, 25, 1046-1055.
24. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (6), 636-641.
25. Sun, J.; Ma, L.; Yang, Z.; Wang, L. Optimization of species stability and interconversion during the complexing reaction for chromium speciation by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2014, 00, 1–7.
26. Tsoi, Y. K.; Leung, K. S. Y. Simultaneous determination of seven elemental species in estuarine waters by LC-ICP-DRC-MS. J. Anal. At. Spectrom. 2010, 25 (6), 880-885.
27. 劉恆嚴. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於人體尿液中含砷及硒化合物與營養補給品中含鉻及砷化合物之分析應用. 國立中山大學, 高雄市, 2013.
28. Sumida, T.; Ikenoue, T.; Hamada, K.; Sabarudin, A.; Oshima, M.; Motomizu, S. On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry. Talanta, 2005, 68, 388-393.
29. Som-Aum, W.; Threeprom, J.; Li, H.; Lin, J. M. Determination of chromium(III) and total chromium using dual channels on glass chip with chemiluminescence detection. Talanta, 2007, 71, 2062-2068.
30. Kaewkhomdee, N.; Mounicou, S.; Szpunar, J.; Lobinski, R.; Shiowatana, J. Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal Bioanal Chem, 2010, 396, 1355-1364.
31. Rhodes, N. R. Chromium: Question of essentiality for mammals; its subcellular mechanism; toxicity; uses as a probe for DNA binging. The University of Alabama, Tuscaloosa, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code