Responsive image
博碩士論文 etd-0622115-105546 詳細資訊
Title page for etd-0622115-105546
論文名稱
Title
海洋衍生物在抗血管新生功能機轉及應用之評估
Anti-angiogenic Function, Mechanism and Application of the Marine Derived Compound
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-07-22
關鍵字
Keywords
海洋天然物、血管新生、血管新生因子、肝癌、癌症幹細胞、黑色素癌
Melanoma, Marine drugs, angiogenesis, cancer stem cells, hepatocellular carcinoma
統計
Statistics
本論文已被瀏覽 5746 次,被下載 0
The thesis/dissertation has been browsed 5746 times, has been downloaded 0 times.
中文摘要
天然海洋化合物構成的豐富資源在現今人類疾病藥物發展中扮演重要的角色。 L是海洋軟珊瑚Cladiella australis所萃取出具抗發炎的衍生物。在受到內毒素刺激的巨噬細胞中,L可抑制誘導型一氧化氮合成酶(iNOS)和環氧合酶-2(COX-2),此外,在大鼠頸動脈模式中內膜增生的動脈粥樣硬化動物模型亦有治療效果。由於在內膜生成時,血管新生扮演極為重要的角色。因此本研究著重於在利用L評估血管新生上之功能進而應用於其他相關之疾病。結果發現,L抑制內皮細胞增殖、遷移、管柱形成和基質金屬蛋白酶的活性。此外L對大鼠主動脈環微血管及斑馬魚的血管生長也有明顯的抑制生長。機制研究也發現,在血管內皮細胞中,L抑制血管內皮生長因子(VEGF)和血管內皮生長因子受體(VEGFR2)。另一方面結果表示L也可以抑制肝癌及黑色素癌細胞的生長。因此,本研究主要探討L發展成新的血管內皮生長因子和抗腫瘤血管生成抑製劑。希望進而能抑制腫瘤及腫瘤幹細胞,發展該藥物能成為低副作用的癌症治療用藥。
肝癌在台灣是常見的癌症之一,肝癌目前的治療方式,主要有手術切除、放射線療法、化學治療等。無論如何,整體的肝癌預後效果是很差的。在此研究中,我們也探討了血管新生在肝癌是否有實質性之作用。研究發現 L有效抑制肝癌細胞癌化的功能,包括細胞增殖、集落形成、細胞遷移;並且發現L也同時誘發細胞凋亡。另外也發現L有效的抑制癌症幹細胞的功能例如幹細胞的自我更新以及側群效應。並且有效的抑制了癌症幹細胞的標記CD133及CD44。相同的結果由大鼠的原位肝癌動物模式中也可以觀察到相同情形。
血管新生的過程對絕大多數固體腫瘤的發育與轉移具有關鍵性之影響,包括惡性黑色素瘤。在此研究中,我們也探討了血管新生在黑色素瘤是否有實質性之 作用。我們利用小鼠黑色素瘤細胞(B16F10)來研究L對黑色素癌的作用及其相關機轉。結果也顯示L可抑制黑色素瘤細胞的轉移,主要透過抑制細胞增殖、集落形成、細胞遷移,並且有效的抑制黑色素腫瘤的生長。由以上結果總結我們證實L是一種新的血管新生抑制劑且可用於治療黑色素瘤、肝癌及其他與血管新生有關之疾病。由以上總結L是一種新的血管新生抑制劑具有用於癌症的治療包括黑色素瘤、肝癌及其他與血管新生有關之疾病的潛力。
Abstract
Naturally occurring marine compounds constitute a bountiful drugs resource for human diseases. L is an anti-inflammatory, synthetic intermediate of marine compound E-2 derived from soft coral Cladiella australis. L suppresses the expression of inducible nitric oxide syntheses (iNOS) and cyclooxygenase-II (COX-2) in endotoxin-stimulated macrophage cells, thereby reducing the neointima formation in rat atherosclerosis model. Angiogenesis plays an important role in neointima genesis. Thus, the present study investigated the angiogenic function and mechanism of L. Application of L perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, L potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, L significantly inhibited MMP-2/MMP-9 expression, cell proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). Mechanistic studies revealed that L significantly reduced the VEGF released by reducing VEGF expression at the mRNA and protein levels. In addition, L reduced surface VEGF receptor 2 (VEGFR2/Flk-1) expressions by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the L-induced angiogenesis blockage in vitro and in vivo.
Hepatocellular carcinoma (HCC) is one of the most common malignancies in Taiwan. Current HCC therapies include surgery, chemotherapy, radiofrequency ablation and target therapy. However, the overall prognosis of the patients with HCC remains poor, underscoring the demand of novel therapeutic agents. In this study, we explored the therapeutic potential and mechanism of L in a pre-clinical HCC model. The therapeutic efficacy of L regimen (10 mg/kg/d) was investigated in rats bearing established Novikoff hepatoma by serial ultrasound (US) and histological studies. In addition, the effect of L on distinct tumor growth processes, including cell proliferation and invasion, as well as colony formation, was studied using N1-S1 and Huh7 cells line. L effectively suppressed the self-renewal and drug-pumping functions by sphere and flow cytometry assay in HCC cells. L also depleted the abundance of CD133/CD44 cancer stem cell markers in HCC cells. A 7-day. L therapy significantly perturbed the progression of rat Novikoff hepatoma. Histological analysis revealed that L therapy result is the same as in vitro.
The process of angiogenesis is crucial for progression and metastasis of the majority of solid tumors including melanomas. In this study, we try to investigate whether angiogenesis is a relevant process in melanoma. We studied this effect and relevant signaling pathways in mouse melanoma cells (B16F10). These findings suggest that L suppressed the metastatic properties, including proliferation, anchorage-independent via colony formation, invasion. L also inhibits the melanoma tumor growth. Above of all, L is an anti-angiogenesis drug which also can inhibit the tumor and tumor stem cells, including melanoma, HCC and other angiogenesis related diseases.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
Abstract vi
Chapter 1 1
INTRODUCTION 1
1-1 Marine natural products 1
1-2 Angiogenesis 2
1-3 L (dihydroaustrasulfone alcohol) 4
1-4 Hepatocellular carcinoma 5
1-5 Cancer stem cells and HCC 6
1-6 Drug-resistance in HCC 7
1-7 Melanoma tumor and Metastasis 10
MATERIALS AND METHODS 12
2-1 Coral compounds and antibodies 12
2-2 Aortic Ring Assay 12
2-3 Zebrafish angiogenesis model 13
2-4 Cell culture 15
2-5 Gelatin zymography 16
2-6 Proliferation assay 16
2-7 Migration assay 17
2-8 Tube formation assay 18
2-9 Immunofluorescence assay 18
2-10 Flow cytometric analysis 19
2-11 Colony formation assay 19
2-12 Invasion Assay 20
2-13 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 20
2-14 Western blot analysis 21
2-15 Enzyme-linked immunosorbent assay (ELISA) 22
2-16 Nitric oxide measurement 23
2-17 Sphere formation assay 23
2-18 Side population cells (SPCs) analysis 23
2-19 Animal experiments 24
2-20 Retrovirus production and infection 25
2-21 Primary melanoma models 25
2-22 Metastasis melanoma models 26
2-23 Scratch Migration Assay 26
Chapter 3 28
Coral-derived Compound L Inhibits Angiogenesis by At tenuating VEGF/VEGFR2 Signaling Pathway 28
3-1 Results 28
3-2 DISCUSSION 37
3-3 Figure and Legends 41
Chapter 4 60
Coral-derived Compound L suppresses hepatoma stemness and progression 60
4-1 Reuslts 60
4-4 DISCUSSION 68
4-5 FIGURES AND LEGENDS 70
Chapter 5 84
Coral-derived Compound L suppresses melanoma and melanoma metastasis 84
5-1 Results 84
5-2 DISCUSSION 86
5-3 FIGURES AND LEGENDS 89
APPENDIX 95
REFERENCES 99
Shih-Wei Lin CV 105
參考文獻 References
1. Li, J. W., and Vederas, J. C. (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161-165
2. Molinski, T. F., Dalisay, D. S., Lievens, S. L., and Saludes, J. P. (2009) Drug development from marine natural products. Nature reviews. Drug discovery 8, 69-85
3. Maskey, R. P., Helmke, E., Kayser, O., Fiebig, H. H., Maier, A., Busche, A., and Laatsch, H. (2004) Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. The Journal of antibiotics 57, 771-779
4. Su, J. H., Chen, B. Y., Hwang, T. L., Chen, Y. H., Huang, I. C., Lin, M. R., Chen, J. J., Fang, L. S., Wang, W. H., Li, J. J., Sheu, J. H., and Sung, P. J. (2010) Excavatoids L-N, new 12-hydroxybriaranes from the cultured octocoral Briareum excavatum (Briareidae). Chemical & pharmaceutical bulletin 58, 662-665
5. Sepe, V., Ummarino, R., D'Auria, M. V., Mencarelli, A., D'Amore, C., Renga, B., Zampella, A., and Fiorucci, S. (2011) Total synthesis and pharmacological characterization of solomonsterol A, a potent marine pregnane-X-receptor agonist endowed with anti-inflammatory activity. Journal of medicinal chemistry 54, 4590-4599
6. Germano, G., Frapolli, R., Simone, M., Tavecchio, M., Erba, E., Pesce, S., Pasqualini, F., Grosso, F., Sanfilippo, R., Casali, P. G., Gronchi, A., Virdis, E., Tarantino, E., Pilotti, S., Greco, A., Nebuloni, M., Galmarini, C. M., Tercero, J. C., Mantovani, A., D'Incalci, M., and Allavena, P. (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer research 70, 2235-2244
7. Vo, T. S., and Kim, S. K. (2010) Potential anti-HIV agents from marine resources: an overview. Marine drugs 8, 2871-2892
8. Thomas, T. R., Kavlekar, D. P., and LokaBharathi, P. A. (2010) Marine drugs from sponge-microbe association--a review. Marine drugs 8, 1417-1468
9. Folkman, J. (2007) Angiogenesis: an organizing principle for drug discovery? Nature reviews. Drug discovery 6, 273-286
10. Potente, M., Gerhardt, H., and Carmeliet, P. (2011) Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887
11. Ferrara, N. (2009) VEGF-A: a critical regulator of blood vessel growth. European cytokine network 20, 158-163
12. Carmeliet, P., and Jain, R. K. (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307
13. Wen, Z. H., Chao, C. H., Wu, M. H., and Sheu, J. H. (2010) A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. European journal of medicinal chemistry 45, 5998-6004
14. Li, P. C., Sheu, M. J., Ma, W. F., Pan, C. H., Sheu, J. H., and Wu, C. H. (2015) Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Marine drugs 13, 3046-3060
15. Chen, Y. C., Wen, Z. H., Lee, Y. H., Chen, C. L., Hung, H. C., Chen, C. H., Chen, W. F., and Tsai, M. C. (2015) Dihydroaustrasulfone alcohol inhibits PDGF-induced proliferation and migration of human aortic smooth muscle cells through inhibition of the cell cycle. Marine drugs 13, 2390-2406
16. Wang, Y. C., Hung, H. C., Feng, C. W., Huang, S. Y., Chen, C. H., Lin, Y. Y., Chen, Y. C., Yang, S. N., Su, J. H., Sheu, J. H., and Wen, Z. H. (2015) Dihydroaustrasulfone Alcohol (WA-25) Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-beta1 Pathway. International journal of molecular sciences 16, 10507-10525
17. Bosch, F. X., Ribes, J., and Borras, J. (1999) Epidemiology of primary liver cancer. Seminars in liver disease 19, 271-285
18. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature 414, 105-111
19. Majumdar, A., Curley, S. A., Wu, X., Brown, P., Hwang, J. P., Shetty, K., Yao, Z. X., He, A. R., Li, S., Katz, L., Farci, P., and Mishra, L. (2012) Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nature reviews. Gastroenterology & hepatology 9, 530-538
20. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., Ng, I. O., Zheng, B. J., and Guan, X. Y. (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542-2556
21. Ma, S., Chan, K. W., Lee, T. K., Tang, K. H., Wo, J. Y., Zheng, B. J., and Guan, X. Y. (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular cancer research : MCR 6, 1146-1153
22. Zhu, Z., Hao, X., Yan, M., Yao, M., Ge, C., Gu, J., and Li, J. (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. International journal of cancer. Journal international du cancer 126, 2067-2078
23. Yang, X. R., Xu, Y., Yu, B., Zhou, J., Qiu, S. J., Shi, G. M., Zhang, B. H., Wu, W. Z., Shi, Y. H., Wu, B., Yang, G. H., Ji, Y., and Fan, J. (2010) High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59, 953-962
24. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W., and Guan, X. Y. (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749-1758
25. You, H., Ding, W., Dang, H., Jiang, Y., and Rountree, C. B. (2011) c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology 54, 879-889
26. Gottesman, M. M., Fojo, T., and Bates, S. E. (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nature reviews. Cancer 2, 48-58
27. Lackner, M. R., Wilson, T. R., and Settleman, J. (2012) Mechanisms of acquired resistance to targeted cancer therapies. Future oncology 8, 999-1014
28. Bagrodia, S., Smeal, T., and Abraham, R. T. (2012) Mechanisms of intrinsic and acquired resistance to kinase-targeted therapies. Pigment cell & melanoma research 25, 819-831
29. Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., Schwartz, B., Simantov, R., and Kelley, S. (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature reviews. Drug discovery 5, 835-844
30. Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., de Oliveira, A. C., Santoro, A., Raoul, J. L., Forner, A., Schwartz, M., Porta, C., Zeuzem, S., Bolondi, L., Greten, T. F., Galle, P. R., Seitz, J. F., Borbath, I., Haussinger, D., Giannaris, T., Shan, M., Moscovici, M., Voliotis, D., Bruix, J., and Group, S. I. S. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378-390
31. Kane, R. C., Farrell, A. T., Madabushi, R., Booth, B., Chattopadhyay, S., Sridhara, R., Justice, R., and Pazdur, R. (2009) Sorafenib for the treatment of unresectable hepatocellular carcinoma. The oncologist 14, 95-100
32. Chan, H. H., Chu, T. H., Chien, H. F., Sun, C. K., Wang, E. M., Pan, H. B., Kuo, H. M., Hu, T. H., Lai, K. H., Cheng, J. T., and Tai, M. H. (2010) Rapid induction of orthotopic hepatocellular carcinoma in immune-competent rats by non-invasive ultrasound-guided cells implantation. BMC gastroenterology 10, 83
33. Zaidi, M. R., Day, C. P., and Merlino, G. (2008) From UVs to metastases: modeling melanoma initiation and progression in the mouse. The Journal of investigative dermatology 128, 2381-2391
34. Narayanan, D. L., Saladi, R. N., and Fox, J. L. (2010) Ultraviolet radiation and skin cancer. International journal of dermatology 49, 978-986
35. Erb, P., Ji, J., Kump, E., Mielgo, A., and Wernli, M. (2008) Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer. Advances in experimental medicine and biology 624, 283-295
36. Chambers, A. F., Groom, A. C., and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nature reviews. Cancer 2, 563-572
37. Pantel, K., and Brakenhoff, R. H. (2004) Dissecting the metastatic cascade. Nature reviews. Cancer 4, 448-456
38. Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine 12, 895-904
39. Wu, Y., and Zhou, B. P. (2008) New insights of epithelial-mesenchymal transition in cancer metastasis. Acta biochimica et biophysica Sinica 40, 643-650
40. Mahabeleshwar, G. H., and Byzova, T. V. (2007) Angiogenesis in melanoma. Seminars in oncology 34, 555-565
41. Furuya, M., and Yonemitsu, Y. (2008) Cancer neovascularization and proinflammatory microenvironments. Current cancer drug targets 8, 253-265
42. Bee, Y. S., Sheu, S. J., Ma, Y. L., Lin, H. C., Weng, W. T., Kuo, H. M., Hsu, H. C., Tang, C. H., Liou, J. C., and Tai, M. H. (2010) Topical application of recombinant calreticulin peptide, vasostatin 48, alleviates laser-induced choroidal neovascularization in rats. Molecular vision 16, 756-767
43. Lawson, N. D., and Weinstein, B. M. (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Developmental biology 248, 307-318
44. Weng, W. T., Huang, S. C., Ma, Y. L., Chan, H. H., Lin, S. W., Wu, J. C., Wu, C. Y., Wen, Z. H., Wang, E. M., Wu, C. L., and Tai, M. H. (2014) alpha-Melanocyte-stimulating hormone inhibits angiogenesis through attenuation of VEGF/VEGFR2 signaling pathway. Biochimica et biophysica acta 1840, 1850-1860
45. Ma, Y. L., Lin, S. W., Fang, H. C., Chou, K. J., Bee, Y. S., Chu, T. H., Chang, M. C., Weng, W. T., Wu, C. Y., Cho, C. L., and Tai, M. H. (2014) A novel poly-naphthol compound ST104P suppresses angiogenesis by attenuating matrix metalloproteinase-2 expression in endothelial cells. International journal of molecular sciences 15, 16611-16627
46. Yang, X., Cui, W., Yu, S., Xu, C., Chen, G., Gu, A., Li, T., Cui, Y., Zhang, X., and Bian, X. (2014) A synthetic dl-nordihydroguaiaretic acid (Nordy), inhibits angiogenesis, invasion and proliferation of glioma stem cells within a zebrafish xenotransplantation model. PloS one 9, e85759
47. Proulx, K., Lu, A., and Sumanas, S. (2010) Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Developmental biology 348, 34-46
48. Roman, B. L., Pham, V. N., Lawson, N. D., Kulik, M., Childs, S., Lekven, A. C., Garrity, D. M., Moon, R. T., Fishman, M. C., Lechleider, R. J., and Weinstein, B. M. (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009-3019
49. Sheu, S. J., Bee, Y. S., Ma, Y. L., Liu, G. S., Lin, H. C., Yeh, T. L., Liou, J. C., and Tai, M. H. (2009) Inhibition of choroidal neovascularization by topical application of angiogenesis inhibitor vasostatin. Molecular vision 15, 1897-1905
50. Baum, B., Settleman, J., and Quinlan, M. P. (2008) Transitions between epithelial and mesenchymal states in development and disease. Seminars in cell & developmental biology 19, 294-308
51. Tai, M. H., Kuo, S. M., Liang, H. T., Chiou, K. R., Lam, H. C., Hsu, C. M., Pownall, H. J., Chen, H. H., Huang, M. T., and Yang, C. Y. (2006) Modulation of angiogenic processes in cultured endothelial cells by low density lipoproteins subfractions from patients with familial hypercholesterolemia. Atherosclerosis 186, 448-457
52. Kuo, H. M., Lin, C. Y., Lam, H. C., Lin, P. R., Chan, H. H., Tseng, J. C., Sun, C. K., Hsu, T. F., Wu, C. C., Yang, C. Y., Hsu, C. M., and Tai, M. H. (2012) PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling. Atherosclerosis 221, 341-349
53. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., and Massague, J. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436, 518-524
54. Zhu, N., Lalla, R., Eves, P., Brown, T. L., King, A., Kemp, E. H., Haycock, J. W., and MacNeil, S. (2004) Melanoma cell migration is upregulated by tumour necrosis factor-alpha and suppressed by alpha-melanocyte-stimulating hormone. British journal of cancer 90, 1457-1463
55. Fulton, D., Gratton, J. P., McCabe, T. J., Fontana, J., Fujio, Y., Walsh, K., Franke, T. F., Papapetropoulos, A., and Sessa, W. C. (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601
56. Dimmeler, S., Dernbach, E., and Zeiher, A. M. (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477, 258-262
57. Chen, S. C., Chien, Y. C., Pan, C. H., Sheu, J. H., Chen, C. Y., and Wu, C. H. (2014) Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57BL/6J mice. Marine drugs 12, 196-213
58. Ferrara, N., and Kerbel, R. S. (2005) Angiogenesis as a therapeutic target. Nature 438, 967-974
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.239.123
論文開放下載的時間是 校外不公開

Your IP address is 18.191.239.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code