Responsive image
博碩士論文 etd-0622115-150504 詳細資訊
Title page for etd-0622115-150504
論文名稱
Title
先進絕緣層上矽與鰭式之金氧半場效電晶體 電性分析與可靠度研究
Investigation on the Electrical Analysis and Reliability Issues in Advanced SOI MOSFETs and FinFETs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
熱載子電應力、正偏壓溫度不穩定性、絕緣層上矽、浮體效應、鰭式場效電晶體
Fin Field-Effect Transistors, Silicon On Insulator, Hot Carrier Stress, Positive Bias Temperature Instability, Floating body effect
統計
Statistics
本論文已被瀏覽 5665 次,被下載 53
The thesis/dissertation has been browsed 5665 times, has been downloaded 53 times.
中文摘要
對於積體電路而言,金氧半場效電晶體扮演著極重要的角色,因其本身具有低功率損耗、低製程成本以及容易微縮之優點。電晶體的發展趨勢遵循莫爾定律(Moore's Law)不斷地微縮。當電晶體持續微縮到深次微米世代時,將面臨閘極控制能力降低導致短通道效應趨於嚴重且微縮也將導致許多漏電流以及可靠度問題,這皆會使得元件功率損耗提高。因此本論文將針對65 nm的絕緣層上矽(SOI)之金氧半場效電晶體以及14 nm的鰭式場效電晶體(FinFETs)探討其電性分析以及可靠度議題。
第一部分將探討PD-SOI MOSFETs在不同溫度下以Body端有無接地的情形去執行熱載子電應力(Hot Carrier Stress, HCS)操作後異常劣化情形並釐清其主導機制。實驗中可發現因浮體效應導致熱載子所引致之劣化在FB操作下比BC操作時嚴重。此外,在FB操作下由熱載子所引起之劣化會隨著溫度升高而變得較不嚴重,並由不同溫度下ID -VD來回掃(dual sweep)曲線中電流開口最大值(√(I_kink ))與Source/Body間PN junction起始電壓(∅_B)呈一線性關係可證實在不同溫度下FB由熱載子所引起的劣化確實是由Source/Body間PN junction儲存電洞的能力所主導。
第二部分將對於FinFETs做電性分析以及可靠度的研究。首先,我們在線性區發現一個異常的基極電流,並對於這個異常的基極電流去做一個成因的探討,經由改變不同的電性量測手法發現,此基極電流是由於fin表面中存在缺陷而引發的漏電。接著我們再針對FinFETs的結構,分別探討HCS以及長/短通道的PBTI可靠度議題。元件的閘極電流在進行熱載子電應力後因正掃時在源極端的電子能量不大而在HfO2層造成淺缺陷因此有利於電流以Frenkel-Poole方式傳輸,反掃(Source/Drain互換)時有電子注入HfO2層而不利於電流以Tunneling方式傳輸。因正掃和反掃操作時在HCS後皆由Tunneling所主導所以其機制快慢會影響到閘極電流的大小,導致在HCS後以正掃操作之閘極電流較大而反掃時較小,因此閘極電流在經由HCS後以靠近源極端時劣化較嚴重。此外,短通道元件在經過正偏壓溫度不穩定性操作後其gm有變好的異常現象出現,歸因於元件有電洞捕獲(hole trapping)在HfO2層使得電子累積在靠近源極與汲極端的LDD使得有效通道長度變短所導致。並進一步使用電場模擬軟體ISE-TCAD去佐證此電洞捕獲現象的來源。
Abstract
Metal-oxide-semiconductor field effect transistors (MOSFETs) play an important role in integrated circuit. The dimension of MOSFETs has been shrinking continuously and follows Moore's Law. But as MOSFETs is shrunk down into the deep submicrometer dimensions, the gate controllability of the channel potential decreases, resulting in enhanced short channel effect, and also lead to leakage current and realibility issues. Therefore, this thesis will investigate the electrical characteristics and reliability issues in PD-SOI MOSFETs and FinFETs, respectively.
In the first part, the abnormal degradation behavior of body contact (BC) and floating body (FB) operation after hot carrier stress in PD-SOI MOSFETs is investigated. It was found that the hot carrier induced degradation under FB operation is more severe than under BC operation due to the floating body effect. Moreover, it was found that the hot carrier induced degradation under FB operation become insignificant with increasing of temperature. Owing to the difference between forward and reverse drain current(√(I_kink )) was proportional to ∅_B of source/drain PN junction with different temperature can verify that the hot carrier induced degradation under FB operation is dominated by the amount of leaving holes at the source/body PN junction.
In the second part, we investigated an abnormal body current in the linear region in FinFETs. Based on different operation condition, it found that the abnormal body current can be attributed to the leakage current result from the surface defect of fin. Also, the reliability issues of HCS and PBTI were investigated, respectively. It was found that after HCS, the degradation of gate current is more obvious at the source than the drain side. This is because lower energy of channel cold electrons where near the source side is small and leading to the shallow trap in HfO2 layer result in the transmission mechanism of the gate current is dominated by Frenkel-Poole. When measurement by the reverse mode (Source/Drain changed), the electron trapping in the HfO2 layer lead to the transmission mechanism of the gate current is hard to tunneling. Whether forward mode or reverse mode, the transmission mechanism of the gate current after stress was dominated by tunneling, so the rate of tunneling would affect the magnitude of gate current. Therefore, the gate current measured by forward mode is larger than by reverse mode after stress. Moreover, it was found that the transconductance of device with short channel length after PBTI would become better, it can be attributed to the hole trapping in the HfO2 layer and LDD near the source and drain side lead to effective channel length (Leff) is shortened by these accumulated electrons. To further confirmed the origin of the hole trapping phenomenon, simulation of electric field was performed by ISE-TCAD.
目次 Table of Contents
致謝 i
摘要 v
Abstract vii
目錄 ix
圖次 xi
表次 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
第二章 文獻回顧 8
2.1 絕緣層上矽(Silicon On Insulator , SOI) 8
2.1.1 浮體效應(Floating Body Effect , Kink Effect) 9
2.1.2 自熱效應(Self-Heating Effect , SHE) 11
2.2 為何使用High-k / Metal Gate 12
2.3 鰭式場效電晶體(Fin Field-Effect Transistors , FinFETs) 15
2.4 熱載子效應(Hot Carrier Effect , HCE) 17
2.5 短通道效應(Short Channel Effect , SCE) 19
2.5.1 臨界電壓下滑(Threshold voltage roll-off) 19
2.5.2 本體碰穿效應(Bulk Punch-Through) 19
2.5.3 閘極引發能障下降(Drain Induced Barrier Lowering , DIBL) 20
第三章 參數萃取與量測技術 35
3.1 量測技術 35
3.1.1 快速量測(Fast I -V) 35
3.2 元件參數萃取 36
3.2.1 臨界電壓(Threshold Voltage, V_th)萃取方法 36
3.2.2 次臨界擺幅(Subthreshold Swing, S.S)萃取方法 37
3.2.3 場效遷移率(Field-Effect Mobility, μ_FE)萃取方法 38
3.3 量測儀器 39
第四章 PD-SOI之Body端有無接地之熱載子效應 42
4.1 簡介 42
4.2 實驗架構 43
4.3 實驗結果與討論 44
4.3.1 室溫下PD-SOI n-MOSFETs之熱載子效應 44
4.3.2 高溫下PD-SOI n-MOSFETs之熱載子效應 46
第五章 FinFETs之電性分析與可靠度研究 61
5.1 簡介 61
5.2 實驗架構 62
5.3 實驗結果與討論 63
5.3.1 探討FinFETs之異常基極電流 63
5.3.2 探討FinFETs之熱載子效應 70
5.3.3 探討長/短通道之正偏壓溫度不穩定性 74
第六章 結論 97
參考文獻 99
參考文獻 References
[1] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, et al., "A 90-nm logic technology featuring strained-silicon," Electron Devices, IEEE Transactions on, vol. 51, pp. 1790-1797, 2004.
[2] M. Bohr, "The evolution of scaling from the homogeneous era to the heterogeneous era," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 1.1. 1-1.1. 6.
[3] S. Natarjan, M. Armstrong, and H. Bost, "A 32nm logic technology featuring 2nd-generation high-k+ metal-gate transistors, enhanced channel strain and 0.171 μm2 SRAM cell size in a 291Mb array," IEDM Proceedings, December, 2008.
[4] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, et al., "High Performance 32nm Logic Technology Featuring 2 nd Generation High-k+ Metal Gate Transistors," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[5] P. Oldiges, K. Bernstein, D. Heidel, B. Klaasen, E. Cannon, R. Dennard, et al., "Soft error rate scaling for emerging SOI technology options," in VLSI Technology, 2002. Digest of Technical Papers. 2002 Symposium on, 2002, pp. 46-47.
[6] "FULLY DEPLETED (FD) VS. PARTIALLY DEPLETED (PD) SOI," May 14 2008.
[7] D. Suh and J. Fossum, "Dynamic floating-body instabilities in partially depleted SOI CMOS circuits," in Electron Devices Meeting, 1994. IEDM'94. Technical Digest., International, 1994, pp. 661-664.
[8] P. G. Der Agopian, J. A. Martino, E. Simoen, and C. Claeys, "Study of the linear kink effect in PD SOI nMOSFETs," Microelectronics journal, vol. 38, pp. 114-119, 2007.
[9] P. G. Der Agopian, J. A. Martino, E. Simoen, and C. Claeys, "Gate Oxide Thickness Influence on the Gate Induced Floating Body Effect in SOI Technology," Journal Integrated Circuits and Systems, vol. 3, pp. 91-95, 2008.
[10] F. Dieudonné, J. Jomaah, and F. Balestra, "Gate-induced floating body effect excess noise in partially depleted SOI MOSFETs," Electron Device Letters, IEEE, vol. 23, pp. 737-739, 2002.
[11] M. Cassé, J. Pretet, S. Cristoloveanu, T. Poiroux, C. Fenouillet-Beranger, F. Fruleux, et al., "Gate-induced floating-body effect in fully-depleted SOI MOSFETs with tunneling oxide and back-gate biasing," Solid-State Electronics, vol. 48, pp. 1243-1247, 2004.
[12] N. Lukyanchikova, M. Petrichuk, N. Garbar, A. Mercha, E. Simoen, and C. Claeys, "Electron valence-band tunneling-induced Lorentzian noise in deep submicron silicon-on-insulator metal–oxide–semiconductor field-effect transistors," Journal of applied physics, vol. 94, pp. 4461-4469, 2003.
[13] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, S.-C. Chen, C.-C. Tsai, et al., "On the origin of hole valence band injection on GIFBE in PD SOI n-MOSFETs," Electron Device Letters, IEEE, vol. 31, pp. 540-542, 2010.
[14] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, F.-Y. Jian, W.-H. Lo, et al., "On the origin of gate-induced floating-body effect in PD SOI p-MOSFETs," Electron Device Letters, IEEE, vol. 32, pp. 847-849, 2011.
[15] L. T. Su, J. E. Chung, D. Antoniadis, K. E. Goodson, and M. Flik, "Measurement and modeling of self-heating in SOI nMOSFET's," Electron Devices, IEEE Transactions on, vol. 41, pp. 69-75, 1994.
[16] N. Yasuda, S. Ueno, K. Taniguchi, C. Hamaguchi, Y. Yamaguchi, and T. Nishimura, "Analytical device model of SOI MOSFETs including self-heating effect," Japanese journal of applied physics, vol. 30, p. 3677, 1991.
[17] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, W.-H. Lo, S.-H. Ho, et al., "Impact of static and dynamic stress on threshold voltage instability in high-k/metal gate n-channel metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 98, p. 092112, 2011.
[18] C.-H. Dai, T.-C. Chang, A.-K. Chu, Y.-J. Kuo, S.-H. Ho, T.-Y. Hsieh, et al., "Hot Carrier Effect on Gate-Induced Drain Leakage Current in n-MOSFETs with HfO2/Ti1-xNx Gate Stacks," Electrochemical and Solid-State Letters, vol. 15, pp. H211-H214, 2012.
[19] J. Robertson, "Band structures and band offsets of high K dielectrics on Si," Applied surface science, vol. 190, pp. 2-10, 2002.
[20] C. C. Hobbs, L. R. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, et al., "Fermi-level pinning at the polysilicon/metal-oxide interface-Part II," Electron Devices, IEEE Transactions on, vol. 51, pp. 978-984, 2004.
[21] J. Robertson, O. Sharia, and A. Demkov, "Fermi level pinning by defects in HfO2-metal gate stacks," Applied Physics Letters, vol. 91, p. 2912, 2007.
[22] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, "Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering," Journal of Applied Physics, vol. 90, pp. 4587-4608, 2001.
[23] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, "High-κ/metal-gate stack and its MOSFET characteristics," Electron Device Letters, IEEE, vol. 25, pp. 408-410, 2004.
[24] K. Ratnakumar, "Short-channel MOST threshold voltage model," Solid-State Circuits, IEEE Journal of, vol. 17, pp. 937-948, 1982.
[25] F.-C. Hsu, R. S. Muller, and C. Hu, "A simplified model of short-channel MOSFET characteristics in the breakdown mode," Electron Devices, IEEE Transactions on, vol. 30, pp. 571-576, 1983.
[26] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, et al., "Sub 50-nm finfet: Pmos," in Electron Devices Meeting, 1999. IEDM'99. Technical Digest. International, 1999, pp. 67-70.
[27] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," Electron Devices, IEEE Transactions on, vol. 47, pp. 2320-2325, 2000.
[28] V. Subramanian, B. Parvais, J. Borremans, A. Mercha, D. Linten, P. Wambacq, et al., "Planar Bulk MOSFET s Versus FinFETs: An Analog/RF Perspective," Electron Devices, IEEE Transactions on, vol. 53, pp. 3071-3079, 2006.
[29] M. Veshala, R. Jatooth, and K. R. Reddy, "Reduction of Short-Channel Effects in FinFET," IJEIT Volume, vol. 2, 2013.
[30] Z. Chen, K. Hess, J. Lee, J. Lyding, E. Rosenbaum, I. Kizilyalli, et al., "Mechanism for hot-carrier-induced interface trap generation in MOS transistors," in Electron Devices Meeting, 1999. IEDM'99. Technical Digest. International, 1999, pp. 85-88.
[31] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley & Sons, 2006.
[32] "Intel's High k/Metal Gate Announcement ." 2003.
[33] M. Bohr and K. Mistry, "Intel’s revolutionary 22 nm transistor technology," Intel website, 2011.
[34] L. Yau, "A simple theory to predict the threshold voltage of short-channel IGFET's," Solid-State Electronics, vol. 17, pp. 1059-1063, 1974.
[35] H. Kawaguchi, H. Abiko, K. Inoue, Y. Saito, T. Yamamoto, Y. Hayashi, et al., "A Robust 0.15um CMOS Technology With CoSi/sub 2/Salicide And Shallow Trench Isolation," in VLSI Technology, 1997. Digest of Technical Papers., 1997 Symposium on, 1997, pp. 125-126.
[36] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics Reliability, vol. 42, pp. 583-596, 2002.
[37] P. Aminzadeh, M. Alavi, and D. Scharfetter, "Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias," in VLSI Technology, 1998. Digest of Technical Papers. 1998 Symposium on, 1998, pp. 178-179.
[38] J. W. Lee, Y. Sasaki, M. J. Cho, M. Togo, G. Boccardi, R. Ritzenthaler, et al., "Plasma doping and reduced crystalline damage for conformally doped fin field effect transistors," Applied Physics Letters, vol. 102, p. 223508, 2013.
[39] K. Eriguchi, A. Matsuda, Y. Takao, and K. Ono, "Effects of straggling of incident ions on plasma-induced damage creation in “fin”-type field-effect transistors," Japanese Journal of Applied Physics, vol. 53, p. 03DE02, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code