Responsive image
博碩士論文 etd-0622115-155425 詳細資訊
Title page for etd-0622115-155425
論文名稱
Title
氧化鋅奈米樹狀結構應用於乙醇氣體感測器之研究
Study of Zinc Oxide with Nanodendrite Structure for Ethanol Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-17
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
水熱法、氧化鋅、乙醇氣體感測器、奈米樹
zinc oxide, nanodendrite, ethanol gas sensor, hydrothermal method
統計
Statistics
本論文已被瀏覽 5768 次,被下載 126
The thesis/dissertation has been browsed 5768 times, has been downloaded 126 times.
中文摘要
本論文探討三維立體奈米樹狀結構的金屬氧化物堆疊式PNPN異質接面乙醇氣體感測器之研製。吾人先利用硝酸銀及氫氟酸之蝕刻溶液於P型(100)矽基板形成奈米柱結構,經由射頻濺鍍系統(RF Sputtering System)成長氧化鋅(ZnO)薄膜作為種晶層。透過水熱法(Hydrothermal Method)成長氧化鋅奈米線至矽奈米柱上,得到初步奈米樹結構。依序再濺鍍上氧化銅(CuO)與氧化鋅薄膜,藉由二次水熱法生長更多氧化鋅奈米樹分枝。完成Si-NR/ZnO-NW/CuO/ZnO-NW (PNPN)異質感測接面。最後再分別蒸鍍鋁金屬(Al)於異質接面上下方,作為金屬電極接觸層。
水熱法及蝕刻所製備的奈米結構因為具有較大的反應面積,能夠提升感測比值。吾人利用XRD及SEM分析薄膜的結晶情況,並觀察薄膜材料之表面結構與厚度,深入探討材料的基本特性以作為元件最佳實驗參數。本研究以不同矽蝕刻時間、不同ZnO種晶層濺鍍時間比較多組元件對乙醇之感測表現。
實驗結果顯示,Si/ZnO/CuO/ZnO全平面型元件在通入100ppm乙醇氣體之靈敏度僅有25%。而具有奈米樹狀結構之元件將靈敏度有效提升至90%,反應與回復時間分別縮短至16秒及40秒。奈米結構改善元件之體表面積比,大幅增進乙醇氣體感測能力。對於應用於工業安全及防止酒駕方面,有極大的潛力。
Abstract
In this thesis, the PNPN heterojunctions with three-dimensional nanodendrite structure were developed for ethanol sensing applications. Firstly, the p-type silicon substrates were etched into nanorods structure by immersing in a mixture of chemical solution. The solution is composed of silver nitrate (AgNO3) and hydrofluoric acid (HF). Next, a zinc oxide (ZnO) film was deposited on the Si nanorods as a seed layer by RF sputtering system. Hydrothermal method was used immediately for growing ZnO nanowires. Copper oxide (CuO) and ZnO thin film were deposited sequentially also by sputtering on the surface of the ZnO nanowires. Once again, a second hydrothermal method was utilized to produce more branches of ZnO nanowires. Finally, the aluminum (Al) electrodes were deposited on the top and the bottom of the Si-NR/ZnO-NW/CuO/ZnO-NW (PNPN) heterojunctions to complete the sensing devices.
Nanodendrite structure has a larger response area, which can enhance the sensing ability. These structures were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM) for the crystallinity, morphology and thickness. The characteristics of the materials were analyzed and discussed for the optimal device parameters. Different etching times and different seed layer sputtering times were investigated for comparing their sensing performances.
According to the experimental results, the all planar device Si/ZnO/CuO/ZnO has only 25% of sensitivity. On the other hand, the device with nanodendrite structure is effectively raised to 90%. The response and recovery times are shortened to 16 s and 40 s, respectively. The large surface to volume ratio of the nanostructure enhances the sensing ability of the device to ethanol gas. It has a great potential for applying into industrial security and prevention of drunk driving.
目次 Table of Contents
目錄
論文審定書..............................................................................................ii
致謝.......................................................................................................iii
摘要.......................................................................................................iv
ABSTRACT.............................................................................................v
目錄 .....................................................................................................vii
圖目錄.....................................................................................................x
表目錄..................................................................................................xiv
第一章 緒論.............................................................................................1
1-1前言................................................................................................1
1-2氣體感測器 ......................................................................................1
1-3各金屬氧化物與乙醇氣體特性............................................................2
1-4論文架構…......................................................................................3
第二章 理論分析......................................................................................4
2-1氧化鋅水熱法生長機制......................................................................4
2-2矽奈米柱蝕刻理論與機制...................................................................4
2-3乙醇氣體感測器工作原理...................................................................5
2-4 PNPN乙醇感測器工作原理...............................................................7
2-5薄膜沉積機制...................................................................................8
2-5-1濺鍍機(Sputter)...........................................................................8
2-5-2蒸鍍機(Evaporator) ......................................................................9
2-6量測儀器原理...................................................................................9
2-6-1掃描電子顯微鏡(Scanning Electron Microscope,SEM)..................9
2-6-2 X光繞射儀(X-ray diffractometer,XRD).......................................11
2-6-3乙醇氣體量測 .............................................................................11
第三章 實驗方法與流程............................................................................13
3-1初始原料選用...................................................................................13
3-2氣體感測器生長系統.........................................................................14
3-2-1射頻濺鍍系統 ..............................................................................14
3-2-2蒸鍍系統.....................................................................................15
3-3氣體感測器量測系統 .........................................................................15
3-4製程步驟與成長參數..........................................................................16
3-4-1基板清洗.....................................................................................17
3-4-2矽奈米柱蝕刻 ..............................................................................17
3-4-3氧化鋅薄膜種子層濺鍍沉積...........................................................17
3-4-4水熱法生長氧化鋅奈米結構...........................................................17
3-4-5氧化銅薄膜與氧化鋅薄膜濺鍍沉積.................................................18
3-4-6再次水熱法生長氧化鋅奈米結構....................................................18
3-4-7蒸鍍系統沉積鋁電極....................................................................18
第四章 結果與討論...................................................................................20
4-1薄膜特性分析...................................................................................20
4-1-1氧化鋅水熱法生長結果.................................................................20
4-1-2矽奈米柱蝕刻結果........................................................................20
4-1-3矽奈米柱上生長氧化鋅奈米線........................................................21
4-1-4矽奈米柱/氧化鋅奈米線上濺鍍氧化銅.............................................22
4-1-5矽奈米柱/氧化鋅奈米線/氧化銅/氧化鋅奈米線.................................22
4-2以再次水熱生長氧化鋅奈米結構.........................................................23
4-3矽晶片上生長氧化鋅奈米片...............................................................23
4-4元件電性量測...................................................................................24
4-4-1矽/氧化鋅/氧化銅/氧化鋅堆疊之平面與奈米結構比較.......................24
4-4-2以矽蝕刻時間作為參數製成PNPN元件對乙醇氣體電性量測..............25
4-5性能最佳元件之動態響應圖與選擇性比較............................................26
第五章 結論與未來展望.............................................................................28
參考文獻.................................................................................................29
附圖........................................................................................................32
附表........................................................................................................79
參考文獻 References
[1] Dongmin An,Yan Li, Xiaoxue Lian, Yunling Zou, Guozhi Deng,“Synthesis of porous
ZnO structure for gas sensor and photocatalytic applications,” Colloids and Surfaces
A: Physicochemical and Engineering Aspects, Volume 447, 5 April 2014, Pages 81–
87.
[2] Lexi Zhang, Yanyan Yin,“Hierarchically mesoporous SnO2 nanosheets: Hydrothermal
synthesis and highly ethanol-sensitive properties operated at low
temperature,”Sensors and Actuators B: Chemical,Volume 185, August 2013, Pages
594–6013.
[3] Nguyen Duc Khoang, Do Dang Trung, Nguyen Van Duy, Nguyen Duc Hoa, Nguyen
Van Hieu,“Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol
gas-sensing performance,” Sensors and Actuators B: Chemical,Volume 174,
November 2012, Pages 594–601
[4] Zhe Chen,Minhua Cao,Changwen ,“HuNovel Zn2SnO4 Hierarchical Nanostructures
and Their Gas Sensing Properties toward Ethanol,”The Journal of Physical Chemistry
C, Volume 115 , 17March 2011 , pp 5522–55293.
[5] Li Liu, Tong Zhang, Lei Zhang, Weiyou Chen, Baokun Xu,“A novel micro-structure
ethanol gas sensor with low power consumption based on La0.7Sr0.3FeO3,”Solid-
State Electronics,Volume 51, Issue 7, July 2007, Pages 1029–1033.
[6] Xiaoyan Zhou, Qingzhong Xue, Huijuan Chen, Chaozhuo Liu,“Current–voltage
characteristics and ethanol gas sensing properties of ZnO thin film/Si heterojunction
at room temperature,”Physica E: Low-dimensional Systems and
Nanostructures,Volume 42, Issue 8, June 2010, Pages 2021–2025.
[7] H.J. Pandya , , Sudhir Chandra, , A.L. Vyas,“Integration of ZnO nanostructures with
MEMS for ethanol sensor,” Sensors and Actuators B: Chemical, Volume 161, Issue
1, 3 January 2012, Pages 923–928.
[8] P. Feng, Q. Wan, T.H. Wang,“Contact-controlled sensing properties of flowerlike ZnO
nanostructures,” Appl. Phys. Lett., 2005 , art. no. 213111.
[9] Y. Liu, J. Dong, P.J. Hesketh, M. Liu,“Synthesis and gas sensing properties of ZnO
single crystal flakes,” J. Mater. Chem., 1May 2005, Pages 2316–2320.
[10] Martha Windholz, Susan Budavari, Lorraine Y Stroumtsos, Margaret Noether
Fertig,1976, “The Merck index : an encyclopedia of chemicals and drugs,” New
Jersey ,Merck.
[11] M.J. Abdullaha,Structural, “optical, and electrical properties of Schottky diodes
based on undoped and cobalt-doped ZnO nanorods prepared by RF-magnetron
sputtering,” Materials Science and Engineering: B, Volume 178, Issue 16, 20
September 2013, Pages 1048–1056.
[12] D. Gopalakrishna,K. Vijayalakshmi, C. Ravidhas, “Effect of annealing on the
properties of nanostructured CuO thin films for enhanced ethanol sensitivity,”
Ceramics International,Volume 39, Issue 7, September 2013, Pages 7685–7691.
[13] K Iwata,P Fons,S Niki, A Yamada, K Matsubara, K Nakahara, T Tanabe, H Takasu,
“ZnO growth on Si by radical source MBE,” Journal of Crystal Growth,Volumes 214–
215, 2 June 2000, Pages 50–54.
[14] Nuengruethai Ekthammathat, Somchai Thongtem, Titipun Thongtem, Anukorn
Phuruangrat, “Characterization and antibacterial activity of nanostructured ZnO thin
films synthesized through a hydrothermal method Powder Technology ,”Volume 254,
March 2014, Pages 199–205.
[15] Ruiyuan Liu, Fute Zhang, Celal Con, Bo Cui,“Baoquan Suncorresponding
Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-
assisted chemical etching,”Nanoscale Res Lett ,vol.8,Issue 1, 4 Apr 2013
[16] B. Bhooloka Rao,“Zinc oxide ceramic semi-conductor gas sensor for ethanol
vapour,”Material chemistry and physics, Volume 64, Issue 1, 31 March 2000,
Pages 62–65.
[17] M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, “Acetone and ethanol sensing of
barium hexaferrite particles: A case study considering the possibilities of non-
conventional hexaferrite,” Sensors and Actuators B: Chemical,Volume 190, January
2014, Pages 627–633.
[18] Thanittha Samerjai, Chaikarn Liewhiran, Anurat Wisitsoraat, Adisorn Tuantranont,
Chanitpa Khanta, Sukon Phanichphant,“Highly selective hydrogen sensing of Pt-
loaded WO3 synthesized by hydrothermal/impregnation methods,”International
Journal of Hydrogen Energy,Volume 39, Issue 11, 4 April 2014, Pages 6120–6128.
[19] Xiaoyan Zhou, Qingzhong Xue, Ming Ma,Jianpeng Li,“Effect of Si substrate on
ethanol gas sensing properties of ZnO films,”Thin Solid Films,Volume 519, Issue 18,
1 July 2011, Pages 6151–6154.
[20] Wiesław Jakubik,“Elemental theory of a SAW gas sensor based on electrical
conductivity changes in bi-layer nanostructures,” Sensors and Actuators B:
Chemical, Volume 203, November 2014, Pages 511–516
[21] 蕭宏,2007,半導體製程技術導論,修訂版,培生教育出版股份有限公司。
[22] 莊達人,1995,VLSI製造技術,高立圖書股份有限公司。
[23] 張以忱,2009,真空鍍膜設備,冶金工業出版社。
[24] 羅聖全,2013年5月,科學基礎之重要利器-掃描式電子顯微鏡(SEM) , 科學研習,台
灣中央大學,Pages 52。
[25] 蔡坤龍,X-射線技術於環境化學分析之應用,環境檢驗電子報,第二十二期。
[26] 許樹恩,吳泰伯,1992,X光繞射原理與材料結構分析,中國材料科學學會。
[27] Koustuv Chatterjee, David Dollimore, Kenneth Alexander ,“A new application for the
Antoine equation in formulation development International,” Journal of
Pharmaceutics,Volume 213, Issues 1–2, 1 February 2001, Pages 31–44.
[28] Ethyl Corporation, Detroit, Michigan,“THE ANTOINE EQUATION FOR VAPOR-
P~SSU~ DATA,” Ethyl Corporation, 3 May 1946.
[29] Thomas C. Gregory,1992,化學藥品辭典,益群書店股份有限公司
[30] M. Krzywiecki , L. Grządziel , H. Peisert, I. Biswas, T. Chassé, J. Szuber ,“X-ray
Photoelectron Spectroscopy characterization of native and RCA-treated Si (111)
substrates and their influence on surface chemistry of copper phthalocyanine thin
films,” Thin Solid Films, Volume 518, Issue 10, 1 March 2010, Pages 2688–2694.
[31] C.M. Shina, J.Y. Lee, J.H. Heo, J.H. Park, C.R. Kim, H. Ryu, J.H. Chang, C.S.
Son, W.J. Lee, S.T. Tan, J.L. Zhao, X.W. Sun ,“Effects of the annealing duration of
the ZnO buffer layer on structural and optical properties of ZnO rods grown by a
hydrothermal process,”Applied Surface Science,Volume 255, Issue 20, 30 July
2009, Pages 8501–8505.
[32] Bai Xue,Yi Liang, Liu Donglai, Nie Eryong, Sun Congli, Feng Huanhuan, Xu jingjing,
Jin Yong, Jiao Zhifeng, Sun Xiaosong ,“Electrodeposition from ZnO nano-rods to
nano-sheets with only zinc nitrate electrolyte and its photoluminescence,”Applied
Surface Science,Volume 257, Issue 24, 1 October 2011, Pages 10317–10321.
[33] Pragya Tiwari, Himanshu Srivastava, A.K. Srivastava, “A comparative study on the
growth of ZnO nanorods by annealing method in different environments,” Journal of
Alloys and Compounds, Volume 611, 25 October 2014, Pages 117–124
[34] Camelia Florica, Elena Matei, Andreea Costas, Maria Eugeni Toimil Molares, Ionut
Enculescu,“Field Effect Transistor with Electrodeposited ZnO Nanowire
Channel,”Electrochimica Acta, Volume 137, 10 August 2014, Pages 290–297.
[35] Ming-Ru Yu, Gobalakrishnan Suyambrakasam, Ren-Jang Wu, Murthy Chavali ,
“Performance evaluation of ZnO–CuO hetero junction solid state room temperature
ethanol sensor,”Materials Research Bulletin, Volume 47, Issue 7, July 2012, Pages
1713–1718.
[36] K.K. Bhargav, A. Maity, S. Ram, S.B. Majumde ,“ Low temperature butane sensing
using catalytic nano-crystalline lanthanum ferrite sensing element,” Sensors and
Actuators B: Chemical,Volume 195, May 2014, Pages 303–312.
[37] S. Roy, N. Banerjee, C.K. Sarkar, P. Bhattacharyya, “Development of an ethanol
sensor based on CBD grown ZnO nanorods,”Solid-State Electronics,Volume 87,
September 2013, Pages 43–50.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code