Responsive image
博碩士論文 etd-0622115-183824 詳細資訊
Title page for etd-0622115-183824
論文名稱
Title
一個十位元每秒取樣二億五千萬次的二元搜尋式及雙通道連續漸進式之兩級類比數位轉換器
A 10-bit 250MS/s Two-Step Binary-Search Assisted Time-Interleaved SAR ADC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
二元搜尋式類比數位轉換器、動態比較器、拔靴帶式開關、連續漸進式類比數位轉換器
Dynamic Comparator, Bootstrapped Switch, Successive Approximation ADC, Binary Search ADC
統計
Statistics
本論文已被瀏覽 5734 次,被下載 451
The thesis/dissertation has been browsed 5734 times, has been downloaded 451 times.
中文摘要
本論文採用TSMC 90nm製程技術,分析並實作一個10位元、250MS/s取樣速率的兩級管線式類比數位轉換器,並致力於降低功率的虧損。第一級使用二元搜尋式類比數位轉換器完成前5位元資料轉換,提高整體轉換速率;第二級使用連續漸進式類比數位轉換器作為子類比數位轉換器,提高整體架構的精確度,並搭配雙通道分時並行式的概念,將第二級轉換速度提升,完成整體的10位元輸出。

  二元搜尋式類比數位轉換器使用參考電壓預測機制,有效減少比較器數量,進一步減少晶片面積。第二級類比數位轉換器以bit-by-bit的方式接收第一級比較之結果,並直接切換對應之電容,此方法可加快電容切換的穩定時間,並減少settling error的發生。在連續漸進式類比數位轉換器中,提出LSB電容採用半參考電壓的方法,相較傳統架構減少75%的總電容值,減小晶片面積及降低整體功率消耗。
Abstract
This thesis presents the architecture of a 10-bit 250-MS/s two-step pipelined analog-to-digital converter for reducing power consumption in TSMC 90nm CMOS technology. The first stage is implemented with a 5-bit binary search ADC to increase conversion speed. The second stage is built with SAR ADC which can enhance the accuracy of the entire system. In order to achieve high speed of the second stage, a concept of two-channel time-interleaved is adopted.

In BS-ADC, we use the mechanism of predicting reference voltage in switching circuit to reduce the number of comparator efficiently. The 2nd stage ADC receives the result from 1st stage ADC bit by bit and directly switches the matching capacitor. The method can reduce settling time for switching capacitor and lower settling error. In SAR ADC, we proposed a method that connects the bottom of LSB capacitor to half reference voltage. Compared to the conventional architecture, the total capacitance is reduced by 75%. Therefore, it can get the small area and fine power efficiency.
目次 Table of Contents
Chapter1 緒論 1
1.1 研究動機與目標 1
1.2 論文章節組織 1
Chapter2 類比數位轉換器的原理與特性參數 3
2.1 類比數位轉換器介紹 3
2.2 類比數位轉換器的特性參數 3
2.2.1 取樣頻率(Sampling Rate) 3
2.2.2 量化誤差(Quantization Error) 4
2.2.3 最小有效位元(Least Signification Bit) 5
2.2.4 單一性(Monotonicity) 5
2.2.5 遺失碼(Missing Code) 5
2.2.6 靜態性能(Static Performance) 6
2.2.6.1 偏移誤差(Offset Error) 6
2.2.6.2 增益誤差(Gain Error) 7
2.2.6.3 微分非線性度誤差(Differential Non-Linearity, DNL) 7
2.2.6.4 積分非線性度誤差(Integral Non-Linearity, INL) 8
2.2.7 動態性能(Dynamic Performance) 8
2.2.7.1 訊號雜訊比(Signal-to-Noise Ratio, SNR) 8
2.2.7.2 訊號雜訊失真比(Signal-to-Noise & Distortion Ratio, SNDR) 9
2.2.7.3 無寄生動態範圍(Spurious Free Dynamic Range, SFDR) 9
2.2.7.4 有效位元(Effective Number of Bits, ENOB) 10
2.3 2.3 高速類比數位轉換器架構 10
2.3.1 快閃式類比數位轉換器(The Flash ADC) 10
2.3.2 二元搜尋式類比數位轉換器(The Binary Search ADC) 11
2.3.3 管線式類比數位轉換器(The Pipeline ADC) 12
2.3.4 連續漸進式類比數位轉換器(The Successive Approximation ADC) 13
2.3.5 分行並行式類比數位轉換器(Time Interleaved Parallel ADC) 15
Chapter3 二級管線式類比數位轉換器電路分析與設計考量 17
3.1 低電壓設計考量 17
3.2 取樣保持電路 17
3.2.1 電阻值設計考量 18
3.3 MOS開關 19
3.3.1 開關導通電阻 19
3.3.2 CMOS開關(Transmission Gate) 19
3.3.3 拔靴帶式開關(Bootstrapped Switch) 20
3.3.4 電荷注入效應(Charge Injection) 22
3.3.5 時脈耦合效應(Clock Feedthrough) 23
Chapter4 二級管線式類比數位轉換器之實現 25
4.1 系統架構 25
4.2 第一級之二元搜尋式類比數位轉換器 26
4.2.1 架構介紹 26
4.2.2 Lewis-Gray全差動式動態比較器 29
4.2.3 Switching Network 31
4.3 第二級之雙通道連續漸進式類比數位轉換器 33
4.3.1 傳統全差動式SAR ADC 33
4.3.2 改良式LSB半參考電壓電容陣列 34
4.3.3 Latch-type動態比較器 39
4.3.4 SAR控制邏輯電路 40
4.3.4.1 非同步時脈產生器 41
4.3.4.2 DAC Driver 42
4.4 時脈產生器 46
4.4.1 非重疊時脈產生器 46
4.4.2 雙通道時脈設計 47
Chapter5 效能量測與模擬結果分析 48
5.1 效能量測方法 48
5.1.1 FFT test 48
5.1.2 Histogram test 49
5.1.3 模擬結果與文獻比較 49
5.1.3.1 靜態分析 50
5.1.3.2 動態分析 52
Chapter6 結論與未來展望 55
6.1 結論 55
6.2 未來展望 55
Reference 56
參考文獻 References
[1] R. J. Baker, “CMOS Circuit Design, Layout, and Simulation,” 3rd ed. John Wiley& Sons, Inc., 2011.
[2] D.A. Johns, K. Martin, “Analog Integrated Circuit Design,” John Wiley& Sons, Inc., 1997.
[3] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, Inc., 2000.
[4] G. Van der Plas and B. Verbruggen, “A 150 MS/s 133 W 7 bit ADC in 90 nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2631–2640, Dec. 2008.
[5] Y. Z. Lin, S. J. Chang, et al. “A 5b 800MS/s 2mW Asynchronous Binary-Search ADC in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 80-81, Feb. 2009.
[6] Y. Z. Lin, S. J. Chang, Y. T. Liu, et al. “An Asynchronous Binary-Search ADC Architecture With a Reduced Comparator Count,” IEEE Transactions on Circuits and Systems I: Regular Papers, , vol. 57, no. 8, pp. 1829-1837, Aug. 2010.
[7] S. S. Wong, U. F. Chio, et al. “A Power Effective 5-bit 600 MS/s Binary-Search ADC with Simplified Switching, ” MWSCAS, pp. 29-32, Aug. 2010.
[8] U. F. Chio, H. L. Choi, C. H. Chan, S. S. Wong, et al. “Comparator-based successive folding ADC,” PrimeAsia 2009. Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, pp. 117-120, Jan. 2009.
[9] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol.45, no.4, pp.731-740, April 2010.
[10] C. Lillebrekke, C. Wulff, and T. Ytterdal, “Bootstrapped switch in low-voltage digital 90nm CMOS technology,” in Proc. IEEE NORCHIP Conference, pp. 234-236, Nov. 2005.
[11] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May 1999.
[12] G. Huang, P. Lin, “A fast bootstrapped switch for high-speed high-resolution A/D converter,” IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 382-385, Dec. 2010.
[13] T. Cho and P. R. Gray, “A 10 b 20 Msamples/s, 35 mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol.30, pp.166-172, Mar. 1995.
[14] L. Sumanen, M. Waltari, V. Hakkarainen, and K. Halonen, “CMOS Dynamic Comparators for Pipeline A/D Converters,” IEEE ISCAS, vol.5, pp. V-157-V-160, May 2002.
[15] J. He, S. Zhan, D. Chen, and R.L. Geiger, “Analyses of Static and Dynamic Random Offset Voltages in Dynamic Comparators,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 56, no. 5, pp. 911-919, May 2009.
[16] I. S. Jung, M. Onabajo, and Y. B. Kim, “A 10-bit 64MS/s SAR ADC using variable clock period method,” Circuits and Systems (MWSCAS), pp.1144-1147, Aug. 2013.
[17] S. S. Wong, U. F. Chio, Y. Zhu, S. W. Sin, and Seng-Pan U; Martins, R.P., “A 2.3 mW 10-bit 170 MS/s Two-Step Binary-Search Assisted Time-Interleaved SAR ADC,” IEEE J. Solid-State Circuits, vol.48, no.8, pp.1783-1794, Aug. 2013.
[18] R. Lotfi , M. Taherzadeh-Sani , M. Y. Azizi and O. Shoaei “A 1-V MOSFET-only fully-differential dynamic comparator for use in low-voltage pipelined A/D converters,” Signals, Circuits and Systems, SCS, vol. 2, pp.377 -380, July 2003.
[19] J. Yang, T. L. Naing, and R. W. Brodersen. “A 1 GS/s 6 bit 6.7 mW successive approximation ADC using asynchronous processing.” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1469-1478, Aug. 2010.
[20] Y. Zhu, C. H. Chan, S. W. Sin, and R. P. Martins, “A 34fJ 10b 500 MS/s partial-interleaving pipelined SAR ADC,” Symp. VLSI Circuits (VLSIC), pp. 90-91, June 2012.
[21] Y. D. Jeon, Y. K. Cho, J. W. Nam, et al. “A 9.15 mW 0.22 mm 2 10b 204MS/s pipelined SAR ADC in 65nm CMOS,” Proc. IEEE Custom Integrated Circuits Conference (CICC), pp. 1-4, Sep. 2010.
[22] B. Razavi, “Design considerations for interleaved ADCs,” IEEE J. Solid-State Circuits, vol.48, no.8, pp. 1806-1817, Aug. 2013.
[23] M. Furuta, M. Nozawa and T. Itakura, “A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC Using Single-Ended 1.5-bit/cycle Conversion Technique,” IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1360-1370, June 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code