Responsive image
博碩士論文 etd-0622116-030031 詳細資訊
Title page for etd-0622116-030031
論文名稱
Title
應用於並聯式主動電力濾波器的電流控制器比較研究
A Comparative Study on Current Regulators for a Shunt Active Power Filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-12
繳交日期
Date of Submission
2016-07-22
關鍵字
Keywords
適應性/可調式遲滯電流控制、並聯式主動電力濾波器、P-Q 理論、遲滯電流控制、預測型電流控制、比例積分控制
Predictive Current Control, Adaptive/Variable Hysteresis Current Control, PI Current Control, Hysteresis Current Control, P-Q Theory, Shunt Active Power Filter
統計
Statistics
本論文已被瀏覽 5874 次,被下載 936
The thesis/dissertation has been browsed 5874 times, has been downloaded 936 times.
中文摘要
研究報告指出為了降低由非線性負載所造成的諧波失真電流而廣泛使用被動濾波器,未經濾波處理的諧波電流流至電力系統將進一步造成電壓失真而影響敏感用戶。由於被動濾波器的諸多缺點,因此這篇論文的背景將著重在並聯式主動濾波器。
評估並聯式主動電力濾波器的電流控制器的效能與特性是這篇論文著重的關鍵。考慮主動式電力濾波器最重要的兩個部分分別為諧波偵測法則與內部電流控制器。諧波偵測法則是基於P-Q 理論下來完成,而電流控制器的技術研究則包括:遲滯型電流控制、適應性/可調式遲滯電流控制、預測型電流控制以及比例積分控制。上述電流調節器的研讀皆在同操作條件下加以分析其相對優、缺點。
模擬結果包括的用於兩種負載條件下9.3kW二極體整流器負載,而在應用並聯式主動電力濾波器之後可以明顯觀察到系統電流濾波回弦波波形。為驗證其有效性與結果而使用了MATLAB/SIMULINK 軟體來加以模擬四種不同的電流調節器。
在分析四種不同電流調節器的模擬結果之後,可以注意到遲滯電流控制提估了較好的效果。電流控制器的效果優劣依序是遲滯電流控制、預測型電流控制。其中,比例積分控制以及適應性/可調式遲滯電流控制則由於穩定性考量與使用電壓限制而從上述排序中允以忽略
Abstract
Extensive use of passive filters has been reported in order to reduce current harmonic distortion levels produced by nonlinear loads. Due to numerous drawbacks associated with passive filters, several active filter topologies have been applied, however the background of this thesis will focus on “Shunt Active Power Filters”.
The assessment of the performance of the current controllers of the Shunt Active Power Filter (SAPF) is the key point for this thesis. The two most important parts to be concern with respect to the Active Power Filter (APF) is the harmonic detection method and the inner current controller. The harmonic detection method is based on the “P-Q Theory” while the current control techniques studied are: Hysteresis Current Control, Adaptive/Variable Hysteresis Current Control, Predictive Current Control and PI Current Control. Advantages and disadvantages for each current regulator will be highlighted based on same operating conditions.
Simulation results are obtained for a 9.3 KW diode rectifier load under two load conditions, where after the application of the SAPF it is clear how the source current becomes sinusoidal. MATLAB/SIMULINK software is used, to validate the results.
After analysis of simulation results, Hysteresis Current Control and Predictive Current Control provides better performance, while Adaptive/Variable Hysteresis Current Control and PI Current Control should be left for other system conditions.
目次 Table of Contents
Declaration iii
Acknowledgments iv
摘要 v
Abstract vi
Table of Contents vii
Table of Figures xi
Table of Tables xviii
Abbreviations xx
Chapter 1 Introduction 1
1.2 Thesis Structure 2
Chapter 2 Literature Review 3
2.1 Introduction 3
2.2 Nonlinear Loads 4
2.3 Types of Nonlinear Loads 5
2.4 Standard of Harmonic Distortion 6
2.5 Methods Available to Reduce THD 8
2.6 Passive Filters 10
2.6.1 Types of Passive Filters 10
2.6.2 Classification of Passive Power Filters 12
2.6.3 Advantages of Passive Filters [9] 15
2.6.4 Disadvantages of Passive Filters [9] 15
2.7 Active Filters 16
2.7.1 Classification of Active Filters 17
2.7.2 Shunt and Series Active Filters 20
2.7.3 Hybrid Active Filters 22
2.8 Types of PWM Converters for Active Filters 24
2.9 Introduction to PQ Theory 27
2.9.1 Clarke Transformation 28
2.9.2 Three Phase Instantaneous Active Power 29
2.9.3 PQ Theory 30
2.10 PQ Theory in Three Phase, Three Wire Systems 30
2.11 Instantaneous Power Components 31
2.12 Pulse Width Modulation (PWM) 34
Chapter 3 Principle of Operation 37
3.1 Introduction 37
3.2 General Description of Shunt Active Filters 38
3.3 Active Filter Controller 40
3.4 Three Phase, Three Wire Shunt Active Filters 40
3.5 PQ Algorithm for the Shunt Active Filter 42
3.6 Current Control Techniques for Shunt Active Filter 44
3.6.1 Hysteresis Current Control 45
3.6.2 Adaptive/Variable Hysteresis Current Control 48
3.6.3 Predictive Current Controller 52
3.6.4 PI Current Control 54
3.7 Stability Analysis of the Predictive Current Controller 55
3.8 Design Considerations of Shunt Active Filter 59
3.8.1 Inverter DC Voltage 59
3.8.2 Coupling Inductor 60
3.8.3 RC Low Pass Filter 61
3.8.4 DC Capacitor Design 61
3.9 DC Voltage Soft Startup 62
3.10 Control Algorithm Under Unbalance Conditions 64
3.10.1 Positive Voltage Sequence Detector 65
Chapter 4 Simulation Results 67
4.1 Introduction 67
4.2 Simulation of Current Controllers 74
4.2.1 Hysteresis Current Control of Shunt Active Power Filter 74
4.2.2 Adaptive/Variable Hysteresis Current Control 81
4.2.3 Predictive Current Control of Shunt Active Power Filter 88
4.2.4 PI Current Control of Shunt Active Power Filter 94
4.3 Transient Analysis of Current Controllers 101
4.3.1 Transient Analysis of Hysteresis Current Controller 101
4.3.2 Transient Analysis of Variable/Adaptive Hysteresis Current Control 104
4.3.3 Transient Analysis of Predictive Current Control 107
4.3.4 Transient Analysis of PI Current Control 109
4.4 Comparative Evaluation of Current Controllers 112
4.5 PI DC Voltage Regulator for DC Capacitor Using Soft Startup 114
4.6 Case Study for Unbalanced Source Voltages and Balanced Nonlinear Load 117
4.6.1 Hysteresis Current Control Under Unbalanced Source Conditions 119
4.6.2 Predictive Current Control Under Unbalanced Source Conditions 122
4.6.3 Summary of Results for Unbalanced Conditions 124
Chapter 5 Conclusions and Future Work 126
References 127
Appendix A 131
參考文獻 References
[1] Santoso, S., Beaty, W. H., Dugan, R. C., and McGranaghan, M. F. (2002). Electrical power systems quality McGraw-Hill Professional
[2] Mark McGranaghan, Electrotek Concepts, Inc. Knoxville TN, USA, Active Filter Design and Specification for Control of Harmonics in Industrial and Commercial Facilities.
[3] Asiminoael, L., Blaabjerg, F., and Hansen, S. (2007). Detection is key - Harmonic detection methods for active power filter applications. IEEE Industry Applications Magazine IEEE Ind. Appl. Mag., 13(4), 22-33.

[4] Lee, T., Wang, Y., and Li, J. (2009). Design of a hybrid active filter for harmonics suppression in industrial facilities. 2009 International Conference on Power Electronics and Drive Systems (PEDS)
[5] Akagi, H. (2005). Active Harmonic Filters. Proceedings of the IEEE Proc. IEEE, 93(12), 2128-2141.

[6] Harmonic Mitigation, Transformers, Power Quality Improvement Mirus International Inc. (n.d.). Retrieved July 03, 2016, from http://mirusinternational.com/
[7] Effects of Harmonics on Power Systems. (n.d.). Retrieved July 08, 2016, from http://ecmweb.com/power-quality/effects-harmonics-power-systems

[8] Akagi, H., Watanabe, E. H., and Aredes, M. (2007). Instantaneous power theory and applications to power conditioning. United States: Wiley, John & Sons.
[9] Ewald F. Fuchs, Mohammad A.S. Masoum (2008). Power Quality in Power Systems and Electrical Machines Academic Press
[10] Hoevenaars, T., Ledoux, K., and Colosino, M. (n.d.). Interpreting IEEE STD 519 and meeting its harmonic limits in VFD applications. IEEE Industry Applications Society 50th Annual Petroleum and Chemical Industry Conference, 2003. Record of Conference Papers

[11] Bhattacharya, A., Chakraborty, C., and Bhattacharya, S. (2009). Shunt compensation. EEE Ind. Electron. Mag. IEEE Industrial Electronics Magazine, 3(3), 38-49.

[12] Dey, P., and Mekhilef, S. (2015). Current Controllers of Active Power Filter for Power Quality Improvement: A Technical Analysis. Automatika Journal Automatika ‒ Journal for Control, Measurement, Electronics, Computing and Communications, 56(1).

[13] Bueno, E., Espinosa, F., Rodriguez, F., Urefia, J., and Cobreces, S. (n.d.). Current control of voltage source converters connected to the grid through an LCL-filter. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[14] Kale, M., and Ozdemir, E. (n.d.). A novel adaptive hysteresis band current controller for shunt active power filter. Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003.

[15] Jog, A. N., and Apte, N. G. (2007). An Adaptive Hysteresis Band Current Controlled Shunt Active Power Filter. 2007 Compatibility in Power Electronics.

[16] Vahedi, H., Sheikholeslami. (2010). Variable hysteresis current control applied in shunt active filter with constant switching frequency. First Power Quality Conference, 2010

[17] Massoud, A., Finney, S., and Williams, B. (n.d.). Predictive current control of a shunt active power filter. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[18] Odavic, M., Zanchetta, P., Sumner, M., and Jakopovic, Z. (2006). High Performance Predictive Current Control for Active Shunt Filters. 2006 12th International Power Electronics and Motion Control Conference.

[19] Buso, S., Malesani, L., and Mattavelli, P. (1998). Comparison of current control techniques for active filter applications. IEEE Trans. Ind. Electron. IEEE Transactions on Industrial Electronics, 45(5), 722-729.

[20] Kazmierkowski, M., and Malesani, L. (1998). Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Trans. Ind. Electron. IEEE Transactions on Industrial Electronics, 45(5), 691-703.

[21] Wu, B. (2006). High-power converters and AC drives. Hoboken, NJ: Wiley.

[22] Teaching Your PI Controller to Behave (Part I). (n.d.). Retrieved July 08, 2016, from https://e2e.ti.com/blogs_/b/motordrivecontrol/archive/2015/07/20/teaching-your-pi-controller-to-behave-part-i

[23] Lenwari, W., Sumner, M., Zanchetta, P., and Culea, M. (2006). A High Performance Harmonic Current Control for Shunt Active Filters Based on Resonant Compensators. IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[24] Routimo, M., Salo, M., and Tuusa, H. (n.d.). Comparison of Voltage-Source and Current-Source Shunt Active Power Filters. IEEE 36th Conference on Power Electronics Specialists, 2005.

[25] Do Different Types of Non-Linear Loads Generate Different Harmonics? Mirus International Inc. (n.d.). Retrieved July 08, 2016, from http://mirusinternational.com/

[26] Chaoui, A., Gaubert, J., Krim, F., and Rambault, L. (2008). On the design of shunt active filter for improving power quality. 2008 IEEE International Symposium on Industrial Electronics.

[27] Dai, N., and Wong, M. (2011). Design considerations of coupling inductance for active power filters. 2011 6th IEEE Conference on Industrial Electronics and Applications.

[28] Popa, D., and Nicolae, P. (2015). Issues with high power shunt active filters operating with distorted mains voltages. Dual inverter topology. 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE).

[29] Chiang, S., and Chang, J. (n.d.). Design and implementation of the parallelable active power filter. 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code