Responsive image
博碩士論文 etd-0622116-201712 詳細資訊
Title page for etd-0622116-201712
論文名稱
Title
碲化鉍與碲化銻系列熱電材料之製備及 其特性之研究
Fabrication and characteristics of Bismuth Telluride and Antimony Telluride-based thermoelectric materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
170
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-07-27
關鍵字
Keywords
熱電優值、碲化銻、功率因子、熱電材料、鉍化銻
bismuth telluride, antimony telluride, power factor, figure of merit, thermoelectric materials
統計
Statistics
本論文已被瀏覽 5813 次,被下載 39
The thesis/dissertation has been browsed 5813 times, has been downloaded 39 times.
中文摘要
有鑑於能源短缺及節能減碳的議題日益迫切,綠能科技成為現今最熱門之研究;熱電材料具備了低污染及再生能源的優點,經由熱電元件可以將熱能與電能相互轉換。Bi2Te3及Sb2Te3系列化合物在室溫範圍具有極佳之熱電優值,且廣泛應用在熱電冷卻及發電方面。本研究將以不同之製程方式製備熱電材料,探討於不同製程方式下所製備出之材料特性。第一種方式將利用粉末冶金之方法分別製備Bi2Te2.7Se0.3及Bi0.5Sb1.5Te3之熱電材料,再以冷壓成型方式以形成其合金塊材,探討燒結溫度及持溫時間對Bi2Te2.7Se0.3及Bi0.5Sb1.5Te3合金之熱電特性影響。第二種方式將利用熱蒸鍍法(thermal evaporation)於矽基板上製備碲化鉍(Bi2Te3)及碲化銻(Sb2Te3)熱電薄膜,探討基板升溫與熱退火處理對薄膜物性及電性之影響;另一方面,利用共蒸鍍法將金屬銀(Silver, Ag)原子摻雜到碲化鉍(Bi2Te3)及碲化銻(Sb2Te3)熱電薄膜進行熱退火處理,以了解摻雜後熱退火處理對材料熱電特性之影響。
在合金塊材的研究中,由Bi2Te2.7Se0.3熱電性質之量測中發現,席貝克係數(Seebeck coefficient)會隨溫度的上升而出現先下降後增加的趨勢,熱傳導率與電阻率呈現一個相反的趨勢,經由公式計算,可得到其功率因子為1.074 mW/mK2;在燒結溫度648K持溫2小時有一最佳之熱電優值ZT為0.31。在Bi0.5Sb1.5Te3的研究可發現,在燒結溫度623K持溫時間1hr下,其Seebeck 係數約為300.694 μV/K,電阻率為最高;當燒結溫度為648K持溫時間為3hr時,可觀察到其微結構為方柱型結晶,且具有較高之ZT 值,其ZT 值在300K時約為0.15。
在薄膜的研究中,將以熱蒸鍍之方式(thermal evaporation)沉積n-type之Bi2Te3與p-type之Sb2Te3熱電薄膜於SiO2/Si基板上,探討沉積溫度與熱退火對於Bi2Te3及Sb2Te3熱電薄膜的結構、組成、與形貌,及其熱電性質之影響。由量測結果可以發現, Bi2Te3及Sb2Te3在基板溫度150°C時,具有較佳之功率因子(Power Factor,PF),其功率因子分別為4.89 μW/cm⋅K2及3.94 μW/cm⋅K2。當Bi2Te3及Sb2Te3熱電薄膜經熱處理(0.5小時)後,Sb2Te3在退火溫度300°C的情況下,可得一較佳之功率因子為11.84 μW/cm⋅K2,而Bi2Te3在退火溫度250°C的情況下,可得一較佳之功率因子為6.05 μW/cm⋅K2。接著利用共蒸鍍的方式,以金屬原子Ag做為摻雜並進行熱退火處理,結果顯示Ag-Bi2Te3在基板溫度100°C,熱退火溫度250°C,時間0.5小時的情況下,可得到功率因子約為2.16 μW/cm·K2;在Ag-Sb2Te3的部分,則是於沉積溫度 150°C、及退火溫度200°C及退火時間 0.5小時時具有最佳的功率因子約為19.99 μW/cm⋅K2。
Abstract
The crisis of energy shortage and carbon reduction has become an important issue; the green technology is getting more and more attention. The thermoelectric power generator exhibits the advantages of environmental protection and renewable energy. The thermoelectric devices can convert heat energy to electric energy and vice versa. Bismuth telluride (Bi-Te) and antimony telluride (Sb-Te)-based compounds, which exhibit the highest figure of merit (ZT), are known to be the best thermoelectric materials within the room temperature region and are widely utilized for thermoelectric cooling and generation. In this study, thermoelectric materials were prepared by different processing methods. The characteristics of the obtained thermoelectric materials are investigated. The powder metallurgy method was adopted to fabricate Bi2Te2.7Se0.3 and Bi0.5Sb1.5Te3 thermoelectric materials via the ball milling, cold pressing, and sintering processes. The effects of sintering time and temperature on the thermoelectric properties are investigated and discussed for the Bi2Te2.7Se0.3 and Bi0.5Sb1.5Te3 thermoelectric materials. On the other hand, Bi2Te3 and Sb2Te3-based thin films were prepared by thermal evaporation method on the silicon substrates. The influences of substrate temperature and annealing temperature on the surface morphology, crystal structure and thermoelectric properties of thin films are investigated. Further, the Ag-doped Bi2Te3 and Sb2Te3 thin films are also fabricated by co-evaporation and then annealed. The effects of post annealing on the microstructures and thermoelectric properties of the thin films are evaluated.
In the study of bulk thermoelectric materials, the Seebeck coefficient of Bi2Te2.7Se0.3 decreased at first and then increased by the increased sintering temperature. Moreover, the results also showed that the thermal conductivity and electrical resistivity exhibited a reversal trend. When the thermal conductivity was increased by the increased sintering temperature, the electrical resistivity was reduced. The calculated PF of 1.074 mW/mK2 was obtained as the sample was sintered at 723K for 2h. The figure of merit (ZT) of 0.31 was obtained at room temperature as the sample was sintered at 648K for 2h. The thermoelectric properties of Bi0.5Sb1.5Te3 showed that the optimal Seebeck coefficient of 300.694 μV/K was obtained as the sample was sintered at 623K for 1h and the resistivity reached the maximum. The figure of merit (ZT) of 0.15 was obtained at room temperature as the sample was sintered at 648K for 3h, in which, the structure showed the rectangular prism crystallization.
Besides, n-type Bi2Te3 and p-type Sb2Te3 thin films were deposited on SiO2/Si substrates using thermal evaporation method in this thesis. The influences of substrate temperature and thermal annealing on the structure, composition, morphology and thermoelectric properties of Bi2Te3 and Sb2Te3 thin films were investigated. As the substrate temperature increased to 150°C, the power factors of n-type Bi2Te3-based and p-type Sb2Te3-based thin films were found to be about 4.89 μW/cm⋅K2 and 3.94 μW/cm⋅K2, respectively. Further, the Ag-doped thin films were fabricated by co-evaporation and the thermal annealing treatment was carried out. The results showed that the Ag-doped Bi2Te3 with a maximized value of power factor of 2.16 μW/cm·K2 could be obtained at the substrate temperature of 100°C and annealing temperature of 250°C (0.5hr). In the Ag-doped Sb2Te3, the thin films exhibited a maximized value of power factor of 19.99 μW/cm·K2 at the substrate temperature of 150°C and annealing temperature of 200°C (0.5hr).
目次 Table of Contents
致謝 i
中文摘要 iii
Abstract v
Contents viii
List of Figures xi
List of Tables xvii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 5
1.3 Dissertation overview 9
Chapter 2 Introduction to thermoelectric materials and literatures review 10
2.1 Principles of thermoelectric 10
2.1.1 Seebeck effect 10
2.1.2 Peltier effect 12
2.1.3 Thomson effect 15
2.1.4 Thermoelectric figure of merit 16
2.1.5 Principle of thermal conductivity 19
2.2 Thermoelectric materials 21
2.2.1 Bismuth-telluride based thermoelectric materials 22
2.2.2 Antimony-telluride based thermoelectric materials 24
2.2.3 Bulk nanostructured thermoelectric materials 26
2.2.4 Thin film thermoelectric materials 29
Chapter 3 Experimental methods and procedures 31
3.1 Experimental procedures 32
3.1.1 Bulk thermoelectric materials 32
3.1.2 Thin film thermoelectric materials 34
3.2 Sample preparation 37
3.2.1 Preparation of bulk samples 37
3.2.2 Preparation of thin film samples 40
3.3 Experimental processes and equipments 44
3.3.1 Thermal evaporation 44
3.3.2 Thermal annealing and sintering processes 46
3.4 Structural characterization 50
3.4.1 X-ray Diffraction (XRD) 50
3.4.2 Scanning electron microscope (SEM) 51
3.4.3 Energy Dispersive X-ray Spectrometer (EDS) 53
3.5 Thermoelectric properties measurement 54
3.5.1 Seebeck coefficient measurement 54
3.5.2 Electrical resistivity measurement 56
3.5.3 Thermal conductivity measurement 58
Chapter 4 Results and discussion 60
4.1 Investigation of the N-type bulk thermoelectric material Bi2Te2.7Se0.3 60
4.1.1 Preparation of the N-type bulk thermoelectric material Bi2Te2.7Se0.3 and the influence of the sintering temperature and sintering time 60
4.1.2 Structural and morphological properties of bulk N-type thermoelectric material Bi2Te2.7Se0.3 and the influence of the sintering temperature and sintering time 61
4.1.3 Electrical properties of N-type bulk thermoelectric material Bi2Te2.7Se0.3 and the influence of the sintering temperature and sintering time 66
4.2 Investigation of the P-type bulk thermoelectric material Bi0.5Sb1.5Te3 71
4.2.1 Preparation of the P-type bulk thermoelectric material Bi0.5Sb1.5Te3 and the influence of the sintering temperature and sintering time 71
4.2.2 Structural and morphological properties of bulk P-type thermoelectric material Bi0.5Sb1.5Te3 and the influence of the sintering temperature and sintering time 72
4.2.3 Electrical properties of P-type bulk thermoelectric material Bi0.5Sb1.5Te3 and the influence of the sintering temperature and sintering time 77
4.3 Investigation of the N-type thin film thermoelectric material Bi2Te3 82
4.3.1 Preparation of the N-type thermoelectric Bi2Te3 thin films by thermal evaporation method and the effects of post thermal annealing 82
4.3.2 Structural and morphological properties of the N-type thermoelectric material Bi2Te3 thin films and the effects of post thermal annealing 83
4.3.3 Electrical properties of the N-type thermoelectric material Bi2Te3 thin films and the effects of post thermal annealing 88
4.4 Investigation of the P-type thin film thermoelectric material Sb2Te3 98
4.4.1 Preparation of the P-type thermoelectric Sb2Te3 thin films by thermal evaporation method and the effects of post thermal annealing 98
4.4.2 Structural and morphological properties of the P-type thermoelectric material Sb2Te3 thin films and the effects of post thermal annealing 99
4.4.3 Electrical properties of the P-type thermoelectric Sb2Te3 thin films and the effects of post thermal annealing 104
4.5 Investigation of the silver doped N-type thermoelectric Bi2Te3 thin films.118
4.5.1 Preparation of the silver doped Bi2Te3 thermoelectric thin films by co-evaporation method and the effects of post thermal annealing 118
4.5.2 Structural and morphological properties of silver doped thermoelectric Bi2Te3 thin films and the effects of post thermal annealing 119
4.5.3 Electrical properties of silver doped thermoelectric Bi2Te3 thin films and the effects of post thermal annealing 122
4.6 Investigation of the silver doped P-type thermoelectric Sb2Te3 thin films.127
4.6.1 Preparation of the silver doped Sb2Te3 thermoelectric thin films by co-evaporation method and the effects of post thermal annealing 127
4.6.2 Structural and morphological properties of silver doped thermoelectric Sb2Te3 thin films and the effects of post thermal annealing 128
4.6.3 Electrical properties of silver doped thermoelectric Sb2Te3 thin films and the effects of post thermal annealing 131
Chapter 5 Conclusions 135
References 138
參考文獻 References
[1] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Taylor & Francis, 2006.
[2] X. F. Zheng, Y. Y. Yan and K. Simpson, “A potential candidate for the sustainable and reliable domestic energy generation Thermoelectric cogeneration system,” Applied Thermal Engineering, vol. 53, pp. 305 - 311, 2013.
[3] N. R. Kristiansen, G. J. Snyder, H. K. Nielsen and L. Rosendahl, “Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator,” Journal of Electronic Materials, vol. 41, pp. 1024 - 1029, 2012.
[4] K. Nielsch, J. Bachmann, J. Kimling and H. Böttner, “Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites,” Advanced Energy Materials, vol. 1, pp. 713 - 731, 2011.
[5] T. M. Tritt, “Holey and unholey semiconductors,” Science, vol. 283, pp. 804 - 805, 1999.
[6] J. C. Zheng, “Recent advances on thermoelectric materials,” Frontiers of Physics in China, vol. 3, pp. 269 - 279, 2008.
[7] J. Yang, “Designing Advanced Thermoelectric Materials for Automotive Applications,” DOE/EPRI High Efficiency Thermoelectrics Workshop, San Diego, CA, February, 2004.
[8] F. R. Stabler, “Commercialization of Thermoelectric Technology,” Materials Research Society Symposium Proceedings, vol. 886, pp. 0886-F01-04.1 - 0886-F01-04.9, 2005.
[9] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, vol. 47, pp. 12727 - 12731, 1993.
[10] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B, vol. 47, pp. 16631 - 16634, 1993.
[11] L. D. Hicks, T. C. Harman, X. Sun and M. S. Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, vol. 53, pp. R10493 - R10496, 1996.
[12] T. J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,” Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, pp. 265 - 373, 1825.
[13] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials, vol. 7, pp. 105 - 114, 2008.
[14] A. Foucaran, A. Sackda, A. Giani, F. Pascal-Delannoy and A. Boyer, “Flash evaporated layers of (Bi2Te3-Bi2Se3)(N) and (Bi2Te3-Sb2Te3)(P),” Materials Science and Engineering B, vol. 52, pp. 154 - 161, 1998.
[15] M. Takashiri, T. Shirakawa, K. Miyazaki and H. Tsukamoto, “Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method,” Sensors and Actuators A, vol. 138, pp. 329 - 334, 2007.
[16] H. Noro, K. Sato and H. Kagechika, “The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering,” Journal of Applied Physics, vol. 73, pp. 1252 - 1260, 1993.
[17] P. Fan, Z. H. Zheng, G. X. Liang, D. P. Zhang and X. M. Cai, “Thermoelectric characterization of ion beam sputtered Sb2Te3 thin films,” Journal of Alloys and Compounds, vol. 505, pp. 278 - 280, 2010.
[18] R. S. Makala, K. Jagannadham and B. C. Sales, “Pulsed laser deposition of Bi2Te3-based thermoelectric thin films,” Journal of Applied Physics, vol. 94, pp. 3907 - 3918, 2003.
[19] H. Obara, S. Higomo, M. Ohta, A. Yamamoto, K. Ueno and T. Iida, “Thermoelectric properties of Bi2Te3-based thin films with fine grains fabricated by pulsed laser deposition,” Japanese Journal of Applied Physics, vol. 48, pp. 085506-1 - 085506-4, 2009.
[20] H. Huang, W. L. Luan and S. T. Tu, “Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering,” Thin Solid Films, vol. 517, pp. 3731 - 3734, 2009.
[21] B. Fang, Z. Zeng, X. Yan and Z. Hu, “Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering,” Journal of Materials Science:Materials in Electronics, vol. 24, pp. 1105 - 1111, 2013.
[22] F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. H. Lee and N. V. Myung, “Recent progress in electrodeposition of thermoelectric thin films and nanostructures,” Electrochimica Acta, vol. 53, pp. 8103 - 8117, 2008.
[23] Y. Ma, E. Ahlberg, Y. Sun, B. B. Iversen and A. E. C. Palmqvist, “Thermoelectric characteristics of electrochemically deposited Bi2Te3 and Sb2Te3 thin films of relevance to multilayer preparation,” Journal of the Electrochemical Society, vol. 159, pp. D50 - D58, 2012.
[24] A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles and A. Boyer, “Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 64, pp. 19 - 24, 1999.
[25] Giani, A. Boulouz, F. Pascal-Delannoy and A. Mzerd, “Electrical and thermoelectrical properties of Sb2Te3 prepared by the metal-organic chemical vapor deposition technique,” Journal of Materials Science Letters, vol. 18, pp. 541 - 543, 1999.
[26] H. Cao, R. Venkatasubramanian, C. Liu, J. Pierce, H. Yang, M. Z. Hasan, Y. Wu and Y. P. Chen, “Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition,” Applied Physics Letters, vol. 101, pp. 162104-1 - 162104-4, 2012.
[27] Y. Kim, A. Divenere, G. K. L. Wong, J. B. Ketterson, S. Cho and J. R. Meyer, “Structural and thermoelectric transport properties of Sb2Te3 thin films grown by molecular beam epitaxy,” Journal of Applied Physics, vol. 91, pp. 715 - 718, 2002.
[28] Y. Jia, D. Yang, B. Luo, S. Liu, M. O. Tade and L. Zhi, “One-pot synthesis of Bi-Ni nanowire and nanocable arrays by coelectrodeposition approach,” Nanoscale Research Letters, vol. 7, pp. 130-1 - 130-6, 2012.
[29] G. Kuo, Y. T. Hsieh, C. F. Yang, C. H. Huang and C. Y. Yen, “Growth of anodic aluminum oxide templates and the application in fabrication of the BiSbTe-based thermoelectric nanowires,” International Journal of Photoenergy, vol. 2014, Article ID 978184, 2014.
[30] T. J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,” Technical Report for the Royal Prussian Academy of Science:Berlin, Germany, 1823.
[31] G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectrics, pp. 294 - 297, 1998.
[32] A. Bulusu and D. G. Walker, “Review of electronic transport models for thermoelectric materials,” Superlattices and Microstructures, vol. 44, pp. 1 - 36, 2008.
[33] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, Taylor & Francis, 2006.
[34] G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics-Basic Principles and New Materials Developments, Springer, Germany, 2001.
[35] J. C. Peltier, “Nouvelles experiences sur la caloriecete des courans electriques,” in Annales de chimie, vol. 56, pp. 371 - 386, 1834.
[36] W. Thomson, “On a mechanical theory of thermo-electric currents,” Proceedings of the Royal Society of Edinburgh, 1851.
[37] W. Thomson, “Account of researches in thermo-electricity,” Proceedings of the Royal Society of London, vol. 7, pp. 49 - 58, 1854.
[38] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials, vol. 7, pp. 105 - 114, 2008.
[39] C. M. Bhandari and D. M. Rowe, “Thermal conduction in semiconductors,” Wiley New Delhi, 1988.
[40] H. J. Goldsmid, Electronic Refrigeration, Pion, London, UK, 1986.
[41] S. Nakajima, “The crystal structure of Bi2Te3-xSex,” Journal of Physics and Chemistry of Solids, vol. 24, pp. 479 - 485, 1963.
[42] I. Teramoto and S. Takayanagi, “Relations between the electronic properties and the chemical bonding of SbxBi2-xTe3-ySey system,” Journal of Physics and Chemistry of Solids, vol. 19, pp. 124 - 129, 1961.
[43] Z. G. Chen, G. Han, L. Yang, L. Cheng and J. Zou, “Nanostructured thermoelectric materials:Current research and future challenge,” Progress in Natural Science: Materials International, vol. 22, pp. 535 - 549, 2012.
[44] G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics:Basic Principles and New Materials Developments, Springer Science & Business Media, 2001.
[45] K. Norimatsu, M. Hada, S. Yamamoto, T. Sasagawa, M. Kitajima, Y. Kayanuma and K. G. Nakamura, “Dynamics of all the Raman-active coherent phonons in Sb2Te3 revealed via transient reflectivity,” Journal of Applied Physics, vol. 117, pp. 143102-1 - 143102-6, 2015.
[46] Z. G. Chen, G. Han, L. Yang, L. Cheng and J. Zou, “Nanostructured thermoelectric materials:Current research and future challenge,” Progress in Natural Science: Materials International, vol. 22, pp. 535 - 549, 2012.
[47] C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis, “Nanostructured Thermoelectrics:Big Efficiency Gains from Small Features,” Advanced Materials, vol. 22, pp. 3970 - 3980, 2010.
[48] M. M. González, O. C. Calero and P. D. Chao, “Nanoengineering thermoelectrics for 21st century:Energy harvesting and other trends in the field,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 288 - 305, 2013.
[49] C. Uher, “Recent Trends in Thermoelectric Materials Research I in Semiconductors and Semimetals,” Elsevier, vol. 69, pp. 139 - 253, Academic, USA, 2001.
[50] B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens and J. R. Thompson, “Filled skutterudite antimonides:Electron crystals and phonon glasses,” Physical Review B, vol. 56, pp. 15081 - 15089, 1997.
[51] G. S. Nolas, M. Kaeser, R. T. Littleton and T. M. Tritt, “High figure of merit in partially filled ytterbium skutterudite materials,” Applied Physics Letters, vol. 77, pp. 1855 - 1857, 2000.
[52] W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu and X. Tang, “Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler,” Journal of the American Chemical Society, vol. 131, pp. 3713 - 3720, 2009.
[53] G. S. Nolas, J. Poon and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bulletin, vol. 31, pp. 199 - 205, 2006.
[54] X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. W. Ng, “On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements,” Advanced Functional Materials, vol. 20, pp. 755 - 763, 2010.
[55] H. Kleinke, “New bulk materials for thermoelectric power generation:clathrates and complex antimonides,” Chemistry of Materials, vol. 22, pp. 604 - 611, 2010
[56] M. Christensen and B. B. Iversen, “Host structure engineering in thermoelectric clathrates,” Chemistry of Materials, vol. 19, pp. 4896 - 4905, 2007.
[57] P. Pichanusakorn and P. Bandaru, “Nanostructured thermoelectrics,” Materials Science and Engineering R, vol. 67, pp. 19 - 63, 2010.
[58] H. Heinrich, K. Lischka, H. Sitter and M. Kriechbaum, “Experimental Determination of Symmetry of Second Valence-Band Maxima in PbTe,” Physical Review Letters, vol. 35, pp. 1107 - 1110, 1975.
[59] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B, vol. 47, pp. 16631 - 16634, 1993.
[60] D. L. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, vol. 47, pp. 12727 - 12731, 1993.
[61] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials,” Advanced Materials, vol. 19, pp. 1043 - 1053, 2007.
[62] A. Foucaran, A. Sackda, A. Giani, F. Pascal-Delannoy and A. Boyer, “Flash evaporated layers of (Bi2Te3-Bi2Se3)(N) and (Bi2Te3-Sb2Te3)(P),” Materials Science and Engineering:B, vol. 52, pp. 154 - 161, 1998.
[63] M. Takashiri, T. Shirakawa, K. Miyazaki and H. Tsukamoto, “ Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method,” Sensors and Actuators A, vol. 138, pp. 329 - 334, 2007.
[64] H. Noro, K. Sato and H. Kagechika, “The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering,” Journal of Applied Physics, vol. 73, no. 3, pp. 1252 - 1260, 1993.
[65] P. Fan, Z. H. Zheng, G. X. Liang, D. P. Zhang and X. M. Cai, “ Thermoelectric characterization of ion beam sputtered Sb2Te3 thin films,” Journal of Applied Physics, vol. 505, pp. 278 - 280, 2010.
[66] R. S. Makala, K. Jagannadham and B. C. Sales, “Pulsed laser deposition of Bi2Te3-based thermoelectric thin films,” Journal of Applied Physics, vol. 94, pp. 3907 - 3918, 2003.
[67] H. Obara, S. Higomo, M. Ohta, A. Yamamoto, K. Ueno and T. Iida, “Thermoelectric Properties of Bi2Te3-Based Thin Films with Fine Grains Fabricated by Pulsed Laser Deposition,” Japanese Journal of Applied Physics, vol. 48, pp. 085506-1 - 085506-4, 2009.
[68] H. Huang, W. L. Luan and S. T. Tu, “Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering,” Thin Solid Films, vol. 517, pp. 3731 - 3734, 2009.
[69] B. Fang, Z. Zeng, X. Yan and Z. Hu, “ Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering,” Journal of Materials Science:Materials in Electronics, vol. 24, pp. 1105 - 1111, 2013.
[70] F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. H. Lee and N. V. Myung, “Recent progress in electrodeposition of thermoelectric thin films and nanostructures,” Electrochimica Acta, vol. 53, pp. 8103 - 8117, 2008.
[71] Y. Ma, E. Ahlberg, Y. Sun, B. B. Iversen and E. C. Palmqvist, “Thermoelectric characteristics of electrochemically deposited Bi2Te3 and Sb2Te3 thin films of relevance to multilayer preparation,” Journal of Electrochemical Society, vol. 159, pp. D50 - D58, 2012.
[72] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles and A. Boyer, “Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD,” Materials Science and Engineering B, vol. 64, pp. 19 - 24, 1999.
[73] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, B. Aboulfarah and A. Mzerd, “Electrical and Thermoelectrical Properties of Sb2Te3 Prepared by the Metal-Organic Chemical Vapor Deposition Technique,” Journal of Materials Science Letters, vol. 18, pp. 541- 543, 1999.
[74] H. Cao, R. Venkatasubramanian, C. Liu, J. Pierce, H. Yang, M. Z. Hasan, Y. Wu and Y. P. Chen, “Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition,” Applied Physics Letters, vol. 101, pp. 162104-1 - 162104-4, 2012.
[75] Y. Kim, A. DiVenere, G. K. L. Wong, J. B. Ketterson, S. Cho and J. R. Meyer, “Structural and thermoelectric transport properties of Sb2Te3 thin films grown by molecular beam epitaxy,” Journal of Applied Physics, vol. 91, pp. 715 - 718, 2002.
[76] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing,” Second Edition. William Andrew, 2010.
[77] L. J. Swartzendruber, “Four-point probe measurement of non-uniformities in semiconductor sheet resistivity,” Solid-State Electronics, vol. 7, pp. 413-422, 1964.
[78] A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London, 1957.
[79] G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, Berlin, Germany, 2001.
[80] B. Fang, Z. Zeng, X. Yan and Z. Hu, “Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering,” Journal of Materials Science:Materials in Electronics, vol. 24, pp. 1105 - 1111, 2013.
[81] J. L. Cui, W. J. Xiu, L. D. Mao, P. Z. Ying, L. Jiang and X. Qian, “Thermoelectric properties of Ag-doped n-type (Bi2Te3)0.9-(Bi2-xAgxSe3)0.1 (x=0-0.4) alloys prepared by spark plasma sintering,” Journal of Solid State Chemistry, vol. 180, pp. 1158 - 1162, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code