Responsive image
博碩士論文 etd-0622117-183943 詳細資訊
Title page for etd-0622117-183943
論文名稱
Title
以電化學沉積及超音波機械鍍膜製作之羥磷灰石鍍層研究生物可降解鎂合金抗生物腐蝕之能力提升
Evaluation and investigation of bio-corrosion resistance enhancement for hydroxyapatite coating on biodegradable Mg alloy using electrodeposition and ultrasonic mechanical coating and armoring technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-07-22
關鍵字
Keywords
生物可降解材料、羥磷灰石鍍層、電化學沉積、超音波機械鍍層、抗腐蝕性
ultrasonic mechanical coating and armoring, electrodeposition, hydroxyapatite coating, biodegradable materials, corrosion resistance
統計
Statistics
本論文已被瀏覽 5740 次,被下載 44
The thesis/dissertation has been browsed 5740 times, has been downloaded 44 times.
中文摘要
近幾十年以來,鈦基、鐵基及鈷基合金已被廣泛研究並實際應用於生醫方面。然而,上述合金除了含有過量溶出會對人體造成傷害的元素以外,其過高的彈性模數亦會造成應力遮蔽效應,導致對植入體周邊的組織產生不良影響,除此之外,現有之生醫材料之植入體在傷癒後有需要經二次手術將植入體取出的缺點,增加病患的手術相關風險。基於此,新一代生物可降解之材料便逐漸受到重視與研究,在這之中,鎂合金尤受注目,除了因為鎂是身體中不可或缺的大量元素之外,亦具有與骨頭較接近之彈性模數。然而,鎂合金的抗腐蝕性質並不理想,作為生物可降解材料無法達到使周圍組織生長齊全之前便分解殆盡,因此,控制鎂合金的降解速率成為了最迫切的課題。科學家們透過表面處理的技術,在材料表面形成一層保護層來達到控制降解速率的效果,而羥磷灰石因著其優良的生物相容性以及骨整合性,使其適合用於生醫材料之鍍層。在諸多表面鍍層方法之中,電化學沉積法具有製程簡單、沉積溫度低、鍍層成分及厚度可控制之特點,也因此該方法在生醫材料的鍍層方面被廣泛的應用。除此之外,Komarov等人在2007年發表了超音波機械鍍膜技術,該方法乃是利用超音波使腔體內的鋼球震動,並藉此將粉體擊打並鍍至基材上。此一方法在生醫材料領域尚未被應用,且利用該法所得到之鍍層,在抗腐蝕能力方面亦未被研究。故在本研究中,電化學沉積以及超音波機械鍍層技數將被用來在AZ31B鎂合金表面鍍一層羥磷灰石,並且針對其抗腐蝕能力進行評估與研究。
在本研究中,經由XRD、EDS、FT-IR等分析,證實電化學沉積以及超音波機械鍍層均能有效地在AZ31B鎂合金表面鍍上羥磷灰石鍍層。而最需關注的抗腐蝕性質方面,根據電化學阻抗頻譜以及動電位極化法之實驗結果,以電化學沉積以及超音波機械鍍層等兩種技術分別製做的具羥磷灰石鍍層之AZ31B鎂合金在模擬人體體液下,相較於未進行任何表面處理之AZ31B鎂合金均具有較大的極化阻抗值以及較小的腐蝕電流密度。因此,經由實驗結果可以證實羥磷灰石鍍層可抑制鎂合金整體的降解速率,使其在生醫材料領域的實際應用上更向前邁進了一步。
Abstract
For few decades, Ti-based, Fe-based and Co-based alloys have been widely investigated and applied in biomedical aspect. Yet, such alloys contain elements which will harm human body in high level; also, the Young’s moduli of these alloys are much higher than that of human bone, which will induce stress-shielding effect, causing negative effect to surrounding tissues. Moreover, secondary surgery may be necessary to remove the implant while the tissue is fully healed. To solve these problems, a new embryonic field, biodegradable materials, was under investigated. Among this field, Mg alloys received most attention, which was mainly because Mg exists abundantly in human body; furthermore, Mg alloys possess closer Young’s modulus to that of human bone. However, the obstacle for Mg alloys in biomedical application was its rapid degradation rate, which would lead to complete dissolution earlier than the tissue was sufficiently healed. Hence, the degradation rate control for Mg alloys became a critical issue. Scientists used surface modification methods to fabricate a coating on the material surface, achieving the goal for controlling the degradation rate. Hydroxyapatite (HA) was a suitable composition for biomaterial coating owing to its excellent biocompatibility and osteointegrity. Electrodeposition was a well-developed method featuring simple process, low deposition temperature and controllable for coating thickness and composition. In addition, Komarov et al. announced a new way that can fabricate coating through the mechanical method, the technique was called ultrasonic mechanical coating and armoring (UMCA). However, for this technique, its application on biomaterials was not observed yet; moreover, the corrosion study for the coating made by this technique was barely found. In this study, both electrodeposition and ultrasonic mechanical coating and armoring techniques were applied to form hydroxyapatite coating on AZ31B Mg alloy, respectively. Their corrosion resistance was also investigated and their extent of enhancement was under evaluation.
In this study, through X-ray diffraction (XRD), electron dispersive spectroscopy (EDS) and Fourier-transformed infrared spectroscopy (FT-IR) analyses, it can be confirmed that both electrodeposition and ultrasonic mechanical coating and armoring (UMCA) can successfully fabricate hydroxyapatite coating on AZ31B surface. As for the most concerned corrosion resistance, according to electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (Tafel) results, coated AZ31B showed larger polarization resistance and decreased corrosion current density. Hence, it can be demonstrated the degradation rate of hydroxyapatite coating can be effectively inhibited, which makes Mg biodegradable materials step forward to practical application.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 v
Abstract vii
Table of Content ix
List of Figures xii
List of Tables xvii
Chapter 1 Introduction 1
1.1 The development of metallic biomaterials 1
1.2 The development of biodegradable materials 2
1.3 Motivation 3
Chapter 2 Background and Literature Review 6
2.1 Biodegradable materials 6
2.2 Biodegradable metals 6
2.2.1 Fe-based biodegradable materials 7
2.2.2 Zn-based biodegradable materials 8
2.2.3 Mg-based biodegradable materials 9
2.3 Surface modification 12
2.3.1 Physical surface modification 13
2.3.2 Chemical surface modifications 14
2.3.2.1 Miscellaneous chemical surface modification methods 14
2.3.2.2 Electrodeposition 15
2.3.3 Mechanical surface modifications 17
2.3.3.1 Typical mechanical surface modification 17
2.3.3.2 Ultrasonic mechanical coating and armoring (UMCA) 18
2.4 Cathodic reactions for coating CaP 19
2.5 Corrosion 22
2.5.1 Corrosion types 23
2.5.2 Electrochemical measurements 25
2.5.2.1 Electrochemical impedance spectroscopy (EIS) 26
2.5.2.2 Potentiodynamic polarization 29
Chapter 3 Experimental Procedures 31
3.1 Preparation of specimens 32
3.2 Parameters of surface modification methods 32
3.2.1 Cathodic polarization 32
3.2.2 Electrodeposition and alkali post-treatments 33
3.2.3 Ultrasonic mechanical coating and armoring 34
3.3 Phase/composition characterization and morphology investigation 34
3.3.1 X-ray diffractometer (XRD) 34
3.3.2 Scanning electron microscope (SEM) 35
3.3.3 Fourier-transform infrared spectroscopy (FT-IR) 35
3.4 Electrochemical tests 35
Chapter 4 Results and Discussion 37
4.1 Cathodic polarization and electrodeposition 37
4.2 X-ray diffraction (XRD) analysis 37
4.2.1 Electrodeposited AZ31B specimen 38
4.2.2 UMCA treated AZ31B specimen 38
4.3 Morphology observation and composition characterization 39
4.3.1 Electrodeposited AZ31B specimen 39
4.3.2 UMCA treated AZ31B specimen 40
4.4 Functional group characterization through FT-IR 42
4.5 Electrochemical tests 43
Chapter 5 Conclusions 48
References 50
Tables 58-69
Figures 70-129
參考文獻 References
[1] E. Crubzy, P. Murail, L. Girard and J.-P. Bernadou, Nature, 391 (1998) 29-29.
[2] J. B. Park, Biomaterials: an introduction, Plenum Publishing Corporation, (1979).
[3] F. Rupp, J. Geis-Gerstorfer and K. E. Geckeler, Advanced Materials, 8 (1996) 254-257.
[4] A. D. Mazzocca, A. Caputo, B. Browner, J. Mast and M. Mendes, Skeletal trauma: basic science, management and reconstruction. 3rd ed. Philadelphia: Saunders, 2003 (2003) 195-250.
[5] U. Kamachimudali, T. M. Sridhar and B. Raj, Sadhana, 28 (2003) 601-637.
[6] D. Blackwood, Corros. Rev., 21 (2003) 97-124.
[7] D. A. Puleo and W. W. Huh, Journal of applied biomaterials : an official journal of the Society for Biomaterials, 6 (1995) 109-116.
[8] J. Nagels, M. Stokdijk and P. M. Rozing, Journal of Shoulder and Elbow Surgery, 12 (2003) 35-39.
[9] J. Park and Y. Kon Kim, Metallic Biomaterials, CRC Press, (2002).
[10] W. H. Sillekens and D. Bormann, Advances in Wrought Magnesium Alloys, Woodhead Publishing, (2012).
[11] Y. F. Zheng, X. N. Gu and F. Witte, Materials Science and Engineering: R: Reports, 77 (2014) 1-34.
[12] I. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference, The National Academies Collection: Reports funded by National Institutes of Health, National Academies Press (US)
National Academy of Sciences., (1997).
[13] A. Hartwig, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475 (2001) 113-121.
[14] N.-E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja and A. Lewenstam, Clinica Chimica Acta, 294 (2000) 1-26.
[15] E. P. DeGarmo, J. T. Black, R. A. Kohser and B. E. Klamecki, Materials and process in manufacturing, (1979).
[16] L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, Cambridge university press, (1999).
[17] J.-W. Choi, Y.-M. Kong, H.-E. Kim and I.-S. Lee, Journal of the American Ceramic Society, 81 (1998) 1743-1748.
[18] T. V. Thamaraiselvi and S. Rajeswari, Artif. Organs, 19 (2004) 9-17.
[19] P. Zartner, R. Cesnjevar, H. Singer and M. Weyand, Catheterization and Cardiovascular Interventions, 66 (2005) 590-594.
[20] M. Guo, L. Cao, P. Lu, Y. Liu and X. Xu, Journal of Materials Science: Materials in Medicine, 22 (2011) 1735-1740.
[21] F. Witte, H. Ulrich, M. Rudert and E. Willbold, Journal of biomedical materials research. Part A, 81 (2007) 748-756.
[22] W.-C. Kim, J.-G. Kim, J.-Y. Lee and H.-K. Seok, Materials Letters, 62 (2008) 4146-4148.
[23] Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang and X. Zhou, Materials & Design, 29 (2008) 2034-2037.
[24] Z. Li, X. Gu, S. Lou and Y. Zheng, Biomaterials, 29 (2008) 1329-1344.
[25] L. Xu, E. Zhang, D. Yin, S. Zeng and K. Yang, Journal of materials science. Materials in medicine, 19 (2008) 1017-1025.
[26] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang and Y. Bian, Acta Biomaterialia, 6 (2010) 626-640.
[27] L. Yang and E. Zhang, Materials Science and Engineering: C, 29 (2009) 1691-1696.
[28] L. Xu, G. Yu, E. Zhang, F. Pan and K. Yang, Journal of Biomedical Materials Research Part A, 83A (2007) 703-711.
[29] M. B. Kannan and R. K. S. Raman, Biomaterials, 29 (2008) 2306-2314.
[30] Y. S. Jeong and W. J. Kim, Corrosion Science, 82 (2014) 392-403.
[31] J. W. Seong and W. J. Kim, Acta Biomaterialia, 11 (2015) 531-542.
[32] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth and H. Windhagen, Biomaterials, 26 (2005) 3557-3563.
[33] L. Li, J. Gao and Y. Wang, Surface and Coatings Technology, 185 (2004) 92-98.
[34] K. van Dijk, H. G. Schaeken, J. G. C. Wolke and J. A. Jansen, Biomaterials, 17 (1996) 405-410.
[35] C. K. Wang, J. H. Lin, C. P. Ju, H. C. Ong and R. P. Chang, Biomaterials, 18 (1997) 1331-1338.
[36] Y. W. Song, D. Y. Shan and E. H. Han, Materials Letters, 62 (2008) 3276-3279.
[37] G. L. de Lange and K. Donath, Biomaterials, 10 (1989) 121-125.
[38] M. Mhaede, F. Pastorek and B. Hadzima, Materials Science and Engineering: C, 39 (2014) 330-335.
[39] G. D. Byrne, L. O'Neill, B. Twomey and D. P. Dowling, Surface and Coatings Technology, 216 (2013) 224-231.
[40] S. V. Komarov, S. H. Son, N. Hayashi, S. D. Kaloshkin, O. V. Abramov and E. Kasai, Surface and Coatings Technology, 201 (2007) 6999-7006.
[41] Q. Chen and G. A. Thouas, Materials Science and Engineering: R: Reports, 87 (2015) 1-57.
[42] Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H. B. Halsall, W. Heineman, S. Sundaramurthy, M. J. Schulz, Z. Yin, V. Shanov, D. Hurd, P. Nagy, W. Li and C. Fox, Materials Today, 12 (2009) 22-32.
[43] H. Li, Y. Zheng and L. Qin, Progress in Natural Science: Materials International, 24 (2014) 414-422.
[44] M. Moravej, F. Prima, M. Fiset and D. Mantovani, Acta Biomaterialia, 6 (2010) 1726-1735.
[45] B. Liu and Y. F. Zheng, Acta Biomaterialia, 7 (2011) 1407-1420.
[46] M. Schinhammer, A. C. Hänzi, J. F. Löffler and P. J. Uggowitzer, Acta Biomaterialia, 6 (2010) 1705-1713.
[47] M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer and G. Hausdorf, Heart, 86 (2001) 563-569.
[48] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum and C. von Schnakenburg, Biomaterials, 27 (2006) 4955-4962.
[49] B. Liu, Y. F. Zheng and L. Ruan, Materials Letters, 65 (2011) 540-543.
[50] M. Moravej, A. Purnama, M. Fiset, J. Couet and D. Mantovani, Acta Biomaterialia, 6 (2010) 1843-1851.
[51] B. L. Vallee, BioFactors, 1 (1988) 31-36.
[52] J. E. Coleman, Current Opinion in Chemical Biology, 2 (1998) 222-234.
[53] D. Vojtěch, J. Kubásek, J. Šerák and P. Novák, Acta Biomaterialia, 7 (2011) 3515-3522.
[54] P. K. Bowen, J. Drelich and J. Goldman, Advanced Materials, 25 (2013) 2577-2582.
[55] F. Witte, Acta Biomaterialia, 6 (2010) 1680-1692.
[56] E. Payr, Arch. Klin. Chir., 62 (1900) 67-93.
[57] E. Payr, Centralblatt für Chirurgie, 28 (1901) 31-37.
[58] A. Lambotte, Bull. Me´m. Soc. Nat. Chir., 28 (1932) 1325-1334.
[59] E. Whitney and S. R. Rolfes, Understanding Nutrition, Cengage Learning, (2007).
[60] M. P. Staiger, A. M. Pietak, J. Huadmai and G. Dias, Biomaterials, 27 (2006) 1728-1734.
[61] L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, Cambridge university press, (1999).
[62] B. A. Shaw, Corrosion: Fundamentals, Testing, and Protection, ASM Int., (2003).
[63] P. D. Darbre, Best practice & research. Clinical endocrinology & metabolism, 20 (2006) 121-143.
[64] P. C. Ferreira, K. d. A. Piai, A. M. M. Takayanagui and S. I. Segura-Muñoz, Revista Latino-Americana de Enfermagem, 16 (2008) 151-157.
[65] N. T. Kirkland, J. Lespagnol, N. Birbilis and M. P. Staiger, Corrosion Science, 52 (2010) 287-291.
[66] B. Venugopal and T. D. Luckey, Metal toxicity in mammals, Plenum Press., (1977).
[67] P. Salunke, V. Shanov and F. Witte, Materials Science and Engineering: B, 176 (2011) 1711-1717.
[68] M. Li, Y. Cheng, Y. F. Zheng, X. Zhang, T. F. Xi and S. C. Wei, Applied Surface Science, 258 (2012) 3074-3081.
[69] J. X. Yang, F. Z. Cui, I.-S. Lee, Y. P. Jiao, Q. S. Yin and Y. Zhang, Surface and Coatings Technology, 202 (2008) 5737-5741.
[70] T. M. Mukhametkaliyev, M. A. Surmeneva, A. Vladescu, C. M. Cotrut, M. Braic, M. Dinu, M. D. Vranceanu, I. Pana, M. Mueller and R. A. Surmenev, Materials Science and Engineering: C, 75 (2017) 95-103.
[71] J. X. Yang, Y. P. Jiao, F. Z. Cui, I.-S. Lee, Q. S. Yin and Y. Zhang, Surface and Coatings Technology, 202 (2008) 5733-5736.
[72] X. B. Chen, N. Birbilis and T. B. Abbott, Corrosion Science, 53 (2011) 2263-2268.
[73] Y. Song, S. Zhang, J. Li, C. Zhao and X. Zhang, Acta Biomaterialia, 6 (2010) 1736-1742.
[74] A. Roy, S. S. Singh, M. K. Datta, B. Lee, J. Ohodnicki and P. N. Kumta, Materials Science and Engineering: B, 176 (2011) 1679-1689.
[75] X. Lin, L. Tan, Q. Zhang, K. Yang, Z. Hu, J. Qiu and Y. Cai, Acta Biomaterialia, 9 (2013) 8631-8642.
[76] J. Liang, P. B. Srinivasan, C. Blawert and W. Dietzel, Corrosion Science, 52 (2010) 540-547.
[77] S. Chen, J. Tu, Q. Hu, X. Xiong, J. Wu, J. Zou and X. Zeng, Journal of Non-Crystalline Solids, 456 (2017) 125-131.
[78] Z. Wei, H. Du and E. Zhang, Surface and Interface Analysis, 43 (2011) 791-794.
[79] Z. Seyedraoufi, S. Mirdamadi and S. Rastegari, International Journal of Engineering-Transactions C: Aspects, 27 (2013) 939-944.
[80] R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin and G.-L. Song, Progress in Organic Coatings, 73 (2012) 129-141.
[81] L. Besra and M. Liu, Progress in Materials Science, 52 (2007) 1-61.
[82] S. Shadanbaz and G. J. Dias, Acta Biomaterialia, 8 (2012) 20-30.
[83] R. Narayanan, S. K. Seshadri, T. Y. Kwon and K. H. Kim, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B (2008) 279-299.
[84] J. Li, Y. Song, S. Zhang, C. Zhao, F. Zhang, X. Zhang, L. Cao, Q. Fan and T. Tang, Biomaterials, 31 (2010) 5782-5788.
[85] Q. Wang, L. Tan, W. Xu, B. Zhang and K. Yang, Materials Science and Engineering: B, 176 (2011) 1718-1726.
[86] M. B. Kannan and O. Lynnley, Biomedical Materials, 6 (2011) 045003.
[87] Z. Pu, J. C. Outeiro, A. C. Batista, O. W. Dillon, D. A. Puleo and I. S. Jawahir, Procedia Engineering, 19 (2011) 282-287.
[88] Z. Pu, G. L. Song, S. Yang, J. C. Outeiro, O. W. Dillon Jr, D. A. Puleo and I. S. Jawahir, Corrosion Science, 57 (2012) 192-201.
[89] M. P. Sealy and Y. B. Guo, Journal of the Mechanical Behavior of Biomedical Materials, 3 (2010) 488-496.
[90] H. Wang, Y. Estrin, H. Fu, G. Song and Z. Zúberová, Advanced Engineering Materials, 9 (2007) 967-972.
[91] S. Romankov, S. V. Komarov, N. Hayashi, S. Ueno, S. Kaloshkin and E. Kasai, Surface and Coatings Technology, 202 (2008) 4285-4290.
[92] S. Romankov, S. V. Komarov, E. Vdovichenko, Y. Hayasaka, N. Hayashi, S. D. Kaloshkin and E. Kasai, International Journal of Refractory Metals and Hard Materials, 27 (2009) 492-497.
[93] S. K. Yen and C. M. Lin, Materials Chemistry and Physics, 77 (2003) 70-76.
[94] T. Kokubo, K. Hata, T. Nakamura and T. Yamamuro, Bioceramics, Butterworth-Heinemann, (1991).
[95] E. Ghali, W. Dietzel and K.-U. Kainer, Journal of Materials Engineering and Performance, 13 (2004) 7-23.
[96] 柯賢文, 腐蝕及其防制, 全華科技圖書股份有限公司, (2006).
[97] T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S. J. Haigh and G. E. Thompson, Corrosion Science, 103 (2016) 157-164.
[98] A. Heiskanen, M. Dufva and J. Emnéus, Microfluidics Based Microsystems: Fundamentals and Applications, Springer Netherlands, (2010).
[99] M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, John Wiley & Sons, (2011).
[100] S.-M. Park and J.-S. Yoo, Analytical Chemistry, 75 (2003) 455 A-461 A.
[101] D. A. Neamen, Electronic circuit analysis and design, McGraw-Hill, (2001).
[102] N. Perez, Kinetics of Activation Polarization, Springer US, (2004).
[103] M. A. Lopez-Heredia, P. Weiss and P. Layrolle, Journal of Materials Science: Materials in Medicine, 18 (2007) 381-390.
[104] C. Wen, S. Guan, L. Peng, C. Ren, X. Wang and Z. Hu, Applied Surface Science, 255 (2009) 6433-6438.
[105] J. L. Ke LU, J. Mater. Sci. Technol., 15 (1999) 193-197.
[106] D. Fabijanic, A. Taylor, K. D. Ralston, M.-X. Zhang and N. Birbilis, CORROSION, 69 (2013) 527-535.
[107] N. Li, Y. D. Li, Y. X. Li, Y. H. Wu, Y. F. Zheng and Y. Han, Materials Science and Engineering: C, 35 (2014) 314-321.
[108] X. Hou, H. Qin, H. Gao, S. Mankoci, R. Zhang, X. Zhou, Z. Ren, G. L. Doll, A. Martini, N. Sahai, Y. Dong and C. Ye, Materials Science and Engineering: C, 78 (2017) 1061-1071.
[109] M. Bobby Kannan and W. Dietzel, Materials & Design, 42 (2012) 321-326.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code