Responsive image
博碩士論文 etd-0623103-095525 詳細資訊
Title page for etd-0623103-095525
論文名稱
Title
雙球面鏡之多次再入射環型共振腔雷射之研究及應用
The study and application of multi-reentrant two-spherical-mirror ring lasers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-05-09
繳交日期
Date of Submission
2003-06-23
關鍵字
Keywords
固態雷射、被動式Q開關、環型共振腔
ring cavity, passive Q-switching, solid state laser
統計
Statistics
本論文已被瀏覽 5722 次,被下載 2923
The thesis/dissertation has been browsed 5722 times, has been downloaded 2923 times.
中文摘要
我們成功的以兩面雷射鏡組成一非共平面多次再入射環型共振腔雷射系統,比其他商業化的環型共振腔系統,它具有體積小及無像差的優點。本篇論文中我們不僅推導出其多次再入射之條件並分析了此非共平面共振腔之穩定性,論文中針對此共振腔輸出光的極化特性也做了一系列之探討與模擬。藉由倒置(reciprocal)及非倒置(non-reciprocal)極化元件使雙方向行進的光由於損耗不同而達到單方向傳播之目的,此種多次再入射環型共振腔已被應用於單縱模雷射及被動式Q開關雷射。
單縱模雷射具有頻率穩定及雜訊小等優點因而被廣泛應用於精密量測、檢測定位等方面,一般單縱模雷射的產生以環型共振腔的雷射架構所輸出的效率最高也最穩定,利用此共振腔再入射的特性可以做出振幅雜訊低於0.3%的單縱膜雷射輸出及其腔內倍頻。
被動式Q開關雷射的優點在其效率高,不占空間且不需要複雜的高壓電路,它可以應用在非線性光學、微機械加工、材料製程及精密測距等。但是被動式Q開關雷射的缺點是嚴重的時序擾動問題,進而影響雷射輸出之穩定性,而此時序擾動之原因主要在共振腔內的光子動態不穩定性及腔內自發性輻射的影響所致。在我們的立體環型系統架構中提供了一個有效降低時序擾動的方法,因此得到一脈衝寬度63 ns,峰值功率250 W的脈衝雷射輸出,由於成功的消除了自發性輻射對飽和吸收體的影響及空間燒孔效應,在不同的激發功率下,累積超過52,000次脈衝時序擾動都可以維持在3 %以下。

Abstract
A novel non-planar and multi-reentrant two-spherical-mirror ring cavity is demonstrated. It is compact and free of astigmatism compare to the commercial ring cavity systems. The multi-reentrant condition of the ring cavity is derived and the stability of the laser cavity is analyzed. The study of polarization evolution in this kind of ring cavity is also presented. Unidirectional operation is achieved by use of reciprocal and nonreciprocal polarization rotators to differentiate the round-trip loss. The multi-reentrant ring cavity has been utilized in single frequency laser and passively Q-switched laser.
Single frequency laser possesses the advantages of high coherence and low noise, which can be used to the applications such as precision measurement. In the methods of single frequency generation, ring cavity configuration was shown to be the most robust one. Using this ring cavity, an IR and its intra-cavity frequency doubled green laser were demonstrated which the amplitude noise is lower than 0.3%.
Passively Q-switched laser is an efficient and compact way to generate high-peak-power laser pulses because high voltages and fast driving electronics are not required. Its high power is useful for diverse applications including nonlinear optical processes, micromachining, material processing and range finders. But the major drawback of a passively Q-switched laser is its inherent large timing jitter, which is mainly originated from the photo dynamics in the cavity, environmental instabilities and spontaneous noise from the gain medium. In our study, we demonstrated the operation of a low-jitter, passively Q-switched laser by using the reentrant two-mirror unidirectional ring cavity, which generates a pulse width of 63ns, peak power of 250 W laser output. Due to the elimination of spontaneous noise and spatial hole burning effects, the timing jitter can be maintained below 3% over a wide range of pump powers with integrations of over 52,000 pulses.
目次 Table of Contents
Acknowledgments …..…………………………………………….……i
中文摘要 …………...…………………………………………….…….ii
ABSTRACTS …..…………………………………………….…….….iii
List of Contents …..…………………………………………….……… v
List of Tables …..…………………………………………….………vii
List of Figures ……..………………………………………….………viii
Chapter 1 Introduction ….……………………………………………..1
Chapter 2 Solid-state laser systems …..……………………………...11
2.1 Diode pumped solid-state lasers ...…………………………..11
2.2 High power laser diodes ……………………………………..12
2.3 Gain medium ………...………………………………………27
Chapter 3 Laser coating ………………………………………………33
3.1 Dielectric thin films …...……………………………………. 33
3.1.1 Fundamentals …...……………………………………37
3.1.2 The quarter-wave rule …...…………………………. 41
3.1.3 Characteristics of coating designs …………………. 48
3.1.4 Optical coating calibration ...……………………….. 64
3.2 Dielectric coating on crystal fiber …...……………………. 73
Chapter 4 Multi-reentrant ring laser ……………………………… 80
4.1 Unidirectional techniques …...…………………………….. 82
4.2 Experimental setup for single frequency laser ………….. 84
4.3 Figure “8” ring laser properties …………...………………86
4.3.1 L-I curve characteristics ………...……………………86
4.3.2 The stability of the ring laser……...…………………87
4.3.3 The transverse and longitudinal mode characteristics93
4.3.4 Frequency doubling ………...…………………………96
4.4 Polarization characteristics ……………..………...……….. 99
4.4.1 Polarization measurement of the linear cavity ……. 100
4.4.2 Jone’s matrix analysis on the ring cavity ………….. 106
4.4.3 Comparison between simulation and experiment …111
4.5 Reentrant condition and stability analysis ……………… 116
4.5.1 Reentrant condition …...……………………………. 118
4.5.2 Stability criterion ……...……………………………. 122
4.5.3 Experimental verification ………………………….. 133
4.6 Q-switched ring laser ………...………………………….... 139
4.6.1 Timing jitter problem ..……………………………... 139
4.6.2 Passively Q-switched ring laser ……………………. 141
Chapter 5 Conclusions …...………………………………………… 152
Appendix ……………………………………………………………. 154
References …………………………………………………………….157
Biography …………………………………………………………… 167
Publication List ………………………………………………………168
參考文獻 References
[1] T. Baer, “Large amplitude fluctuations due to longitudinal mode coupling in diode pumped intracavity doubled Nd:YAG lasers,” J. Opt. Soc. Amer. B. 3 (1986) 1175.
[2] M. Oka and S. Kubota, ”Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett., 13 (1988) 805.
[3] W. J. Koziovsky, C. D. Nabors, and R. L. Byer, ”Second-harmonic generation of a continuous wave diode pumped Nd:YAG laser using an externally resonant cavity,” Opt. Lett., 12 (1987) 1014.
[4] C. L. Tang, H. Statz, and G. Demars, “Regular spiking and single mode operation of ruby laser,” Appl. Phys. Lett. 2 (1963) 222.
[5] C. Pedersen, P. L. Hansen, P. Buchhave, and T. Skettrup, “Single-frequency diode-pumped Nd:YAG prism laser with use of a composite laser crystal,” Appl. Opt. 36 (1997) 6780.
[6] K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single-frequency generation at 532nmfrom a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler,” Appl. Opt. 36 (1997) 4149.
[7] J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14 (1989) 24.
[8] D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. 8 (1972) 235.
[9] R. Polloni and O. Svelto, “Static and dynamic behavior of a single mode Nd:YAG laser,” IEEE J. Quantum Electron. 4 (1968) 481.
[10] Y. V. Troitskii and N. D. Goldina, “Separation of one mode of a laser,” JETP Lett. 7 (1968) 36.
[11] S. A. Collins and R. G. White, “Interferometer laser mode selector,” Appl. Opt. 2 (1963) 448.
[12] P. W. Smith, M. V. Schneider, and H. G. Danielmeyer, “High power single frequency lasers using thin metal films mode selection filters,” Bell Syst. Tech. J. 48 (1969) 1405.
[13] W. Culshaw and J. Kannelaud, “Two component mode filters for optimum single frequency operation of Nd:YAG lasers,” IEEE J. Quantum Electron. 7 (1971) 381.
[14] H. G. Danielmeyer and E. H. Turner, “Electrooptic elimination of spatial hole burning in lasers,” Appl. Phys. Lett. 17 (1970) 519.
[15] H. P. Barber, “Coherence length extension of He-Ne lasers,” Appl. Opt. 7 (1968) 559.
[16] T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167 (1968) 289.
[17] W. W. Rigrod and A. M. Johnson, “Resonant prism mode selector for gas lasers,” IEEE J. Quantum Electron. 3 (1967) 644.
[18] H. G. Danielmeyer, “Stabilized efficient single frequency Nd:YAG laser,” IEEE J. Quantum Electron. 6 (1970) 101.
[19] P. W. Smith, “Stabilized, single frequency output from a long laser cavity,” IEEE J. Quantum Electron. 1 (1965) 343.
[20] R. Scheps and J. Myers, “A single frequency Nd:YAG ring laser pumped by laser diodes,” IEEE J. Quantum Electron. 26 (1990) 413.
[21] T. J. Kane and R. L. Byer, “Monolithic unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10 (1985) 65.
[22] M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, “> 8.5 watts of single frequency 532 nm light from a diode pumped intra-cavity doubled ring laser,” Conf. on Lasers and Electro-Optics, CA, U.S.A., 1996, paper CPD-21.
[23] P. L. Huang, C. R. Weng, H. Z. Cheng, and S. L. Huang, “A passively Q-switched laser constructed by a two-mirror reentrant ring cavity,” Jpn. J. Appl. Phys. 40 (2001) L508.
[24] G. T. Maker, G. P. A. Malcolm, and A. I. Ferguson, “Single frequency diode pumped Nd:YAG ring laser with no intracavity elements,” Opt. Lett. 22 (1993) 1813.
[25] H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser,” Opt. Lett. 25 (2000) 542.
[26] A. H. Rosenthal, “Regenerative circulatory multiple-beam interferometry for the study of light propagation effects,” J. Opt. Soc. Amer. 52 (1962) 1143.
[27] S. Ezekiel and S. R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30 (1977) 478.
[28] H. Lefevre, The fiber optic gyroscope (Norwood, MA, Artech House, 1993)
[29] K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Proposal of a semiconductor ring laser gyroscope,” Opt. and Quantum Electron. 31 (1999) 1219.
[30] D. Kaur, A. M. de Souza, J. Wanna, S. A. Hammad, L. Mercorelli, and D. S. Perry, “Multipass cell for molecular beam absorption spectroscopy,” Appl. Opt. 29 (1990) 119.
[31] D. Nickel, D. Kuhlke, and D. von der Linde, “Multipass dye-cell amplifier for high-repetition-rate femtosecond optical pulses,” Opt. Lett. 14 (1989) 36.
[32] J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20 (1981) 995.
[33] G. W. Haggquist and K. R. Naqvi, “A simple method for prolonging the effective pathlength in laser kinetic spectroscopy,” Rev. Sci. Instrum. (1994) 2188.
[34] New Focus catalog, 8 (1997) 34.
[35] T. H. Maiman, “Stimulated optical radiation in ruby masers,” Nature, 187 (1960) 493.
[36] T. H. Maiman, “Optical and microwave-optical experiments in Ruby,” Phys. Rev. Lett. 4 (1960) 564.
[37] T. H. Maiman, “Stimulated optical emission in fluorescent solids, I, theoretical considerations,” Phys. Rev. Lett. 123 (1961) 1145.
[38] T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Optical and microwave-optical experiments in Ruby,” Phys. Rev. Lett. 123 (1967) 1151.
[39] W. Koechner, Solid state laser engineering (Springer Verlag, New York, 1996).
[40] R. Newman, “Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs,” J. Appl. Phys. 34 (1963) 437.
[41] R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4 (1964) 50.
[42] D. R. Scifres, R. D. Burnham, and W. Streifer, “Phase locked semiconductor laser array,” Appl. Phys. Lett. 33 (1978) 1015.
[43] Laser Focus World “The laser marketplace,” January (1996) 62.
[44] Laser Focus World “Laser enhanced bonding produces strong seams,” August (1995) 32.
[45] E. C. H. Parker, Physics of molecular beam epitaxy (Plenum Press, New York, 1985).
[46] H. C. Casey, Jr., and M. B. Panosh, Heterostructure lasers (Academic Press, New York, 1978).
[47] H. C. Casey, Jr., and M. B. Panosh, “Composition dependence of the direct GA1-xAlxAs and indirect energy gaps,” J. Appl. Phys. 40 (1969) 4910.
[48] H. C. Casey, Jr., D. D. Sell, and M. B. Panosh, “Refractive index of AlxGA1-xAs between 1.2 and 1.8eV,” Appl. Phys. Lett. 24 (1974) 63.
[49] D. D. Sell, H. C. Casey, Jr., and K. W. Wecht, “Concentration dependence of the refractive index for n-type and p-type GaAs between 1.2 and 1.8eV,” J. Appl. Phys. 45 (1974) 2650.
[50] W. Streifer, D. R. Scifres, G. L. Harnagel, D. F. Welch, J. Berger, M. Sakamoto, “Advances in diode laser pumps,” IEEE J. Quantum Electron. 24 (1988) 883.
[51] J. Hecht, The laser guidebook (McGraw Hill, New York, 1991).
[52] R. Trebino, “Achromatic N-prism beam expanders: optimal configurations,” Appl. Opt. 24 (1985) 1130.
[53] A. A. Kaminski, Laser crystals, in springer series in optical sciences (Springer Verlag, New York, 1981).
[54] D. R. Herriott, “Applications of laser light,” Sci. Am. 219 (1968) 141.
[55] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang, “Passively Q-switched quasi three level laser and its intracavity frequency doubling,” Appl. Opt. 41 (2002) 1075.
[56] P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47 (1957) 230.
[57] H. K. Pulker, Coating on glass (Elsevier, 1984).
[58] A. Musset and A. Thelen, Multilayer antireflection coatings (North Holland, Amsterdam, 1966).
[59] H. A. Macleod, Introduction to thin-film optical coatings and filters (Thin Film Center Inc, Tucson, Arizona, 1995).
[60] M. Born and E. Wolf, Principle of optics (Pergamon, Oxford, 1975).
[61] P. H. Berning, Physics of thin films (Academic Press, New York, 1963).
[62] H. A. Macleod, Thin-film optical filters (Adam Hilger Ltd, Bristol, 1986).
[63] Z. Knittl, Optics of thin films (Wiley, London, 1976).
[64] S. D. Smith, “Design of multilayer filters by considering two effective interfaces,” J. Opt. Soc. Am. 48 (1958) 43.
[65] J. H. Apfel, “Graphics in optical coating design,” Appl. Opt. 11 (1972) 1303.
[66] L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42 (1952) 806.
[67] R. R. Willey, Practical design and production of optical thin films (Marcel Decker Inc., New York, 1996).
[68] A. Thelen, Design of optical interference coatings (McGraw Hill, New York 1989).
[69] H. K. Pulker, “Characterizations of optical thin films,” Appl. Opt. 18 (1979) 1969.
[70] W. L. Wolfe, ed., Handbook of optics (McGraw Hill, New York, 1976).
[71] M. Welch, “Vacuum evaporation technology for optical thin films,” Lasers Optron. 6 (1989) 69.
[72] A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56 (1966) 1533.
[73] J. T. Cox, G. Hass, and A. Thelen, “Triple-layer antireflection coatings on glass for the visible and near infrared,” J. Opt. Soc. Am. 52 (1962) 965.
[74] J. T. Cox, “Special type of double-layer antireflection coating for infrared optical materials with high refractive index,” J. Opt. Soc. Am. 51 (1961) 1406.
[75] M. C. Ohmer, “Design of three-layer equivalent films,” J. Opt. Soc. Am. 68 (1978) 137.
[76] I. Szafranek and I. Lubezky, “Broad, double-band antireflection coatings on glasses for 1.06 and visible or ultraviolet radiation: design and experiment,” Proceeding of the SPIE, 401 (1983) 138.
[77] L. B. Lockhart and P. King, “Three-layered reflection-reducing coatings,” J. Opt. Soc. Am. 37 (1947) 689.
[78] P. W. Baumeister and J. M. Stone, “Broad-band multilayer film for fabry-perot interferometers,” J. Opt. Soc. Am. 46 (1956) 228.
[79] R. M. Wood, Laser damage in optical materials (Adam Hilger, Boston, 1986).
[80] T. W. Walker, A. H. Guenther, and P. Nielsen, “Pulsed laser induced damage to thin film optical coatings Part II: theory,” IEEE J. Quantum Electron. 17 (1981) 2053.
[81] E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B23 (1981) 2144.
[82] T. Mcminn, S. Seitel, and M. Babb, “Laser damage of YAG surfaces, laser induced damage in optical materials: 1988,” NIST Spec. Publ. 775 (1989) 321.
[83] W. H. Lowdermilk and D. Milam, “Laser induced surface and coating damage,” IEEE J. Quantum Electron. 17 (1981) 1888.
[84] Evaporation Chemicals and Sputtering Targets, (EM Industries, Inc., Hawthrone, New York, 1986).
[85] 李正中,“薄膜光學與鍍膜技術”,藝軒出版社,1999。
[86] P. Baumeister, “The transmittance and degree of polarization of quarter-wave stacks at non-normal incidence,” Optica Acta 8 (1961) 105.
[87] Z. Knittl, “Control of polarization effects by internal antireflection,” Appl. Opt. 20 (1981) 105.
[88] H. Demiryont, J. R. Sites, and Kent Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Opt. 24 (1985) 490.
[89] E. Aktulga, “Optical parameters of a weakly absorbing film on a nonabsorbing substrate by spectrophotometric transmissivity,” Ph.D. Thesis, Department of Physics, Istanbul U., Istanbul, Turkey.
[90] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Phys. E: Sci. Instrum., 16 (1983) 1214.
[91] 工研院光電所光學元件部,台中精機廠股份有限公司專業鍍膜人才培訓課程,90年5月。
[92] G. M. Davis, I. Yokohama, S. Sudo, and K. Kubodera, “1.3 Nd:YAG crystal fiber amplifiers,” IEEE Photon. Technol. Lett. 3 (1991) 459.
[93] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser” in Advence Solid-States Lasers, OSA Tech. Dig., Davos, Switzerland (2000) MD4-1/103.
[94] A. Guenther and T. Humphrevs, “Physical aspects of laser-induced damage in optical materials,” SPIE, 401 (1983) 247.
[95] 周采璇,“高效率摻釹釔鋁石榴石晶體光纖雷射之研製” ,國立中山大學光電工程研究所碩士論文,2002。
[96] C. Y. Lo, P. L. Huang, T. S. Chou, L. M. Lee, T. Y. Chang, S. L. Huang, L. C. Lin, H. Y. Lin, and F. C. Ho, “Efficient Nd:Y3Al5O12 crystal fiber laser,” Jpn. J. Appl. Phys. 41 (2002) L1228.
[97] R. G. Smith, “Theory of intracavity optical second harmonic generation,” IEEE J. Quantum Electron. 6 (1970) 215.
[98] C. J. Kennedy and J. D. Barry, “Stability of an intracavity frequency doubled Nd:YAG laser,” IEEE J. Quantum Electron. 10 (1974) 596.
[99] J. D. Barry and C. J. Kennedy, “Thermo optical instabilities and bistable behavior with the frequency doubled Nd:YAG laser,” J. Appl. Phys. 48 (1977) 2518.
[100] R. R. Rice, J. R. Teague, and J. E. Jackson, “The effects of optical absorption in Ba2NaNb5O15 on internal frequency doubled operation of Nd:YAG,” J. Appl. Phys. 49 (1978) 5750.
[101] M. A. Karr, “Nd:YAlG-Ba2NaNb5O15 0.66- harmonic source,” J. Appl. Phys. 42 (1971) 4517.
[102] T. Baer, “Large amplitude fluctuations due to longitudinal mode coupling in diode pumped intracavity doubled Nd:YAG lasers,” J. Opt. Soc. Am. B. 3 (1986) 1175.
[103] D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quantum Electron. 8 (1972) 235.
[104] H. G. Danielmeyer, “Electro-optic elimination of spatial hole burning in lasers,” Appl. Phys. Lett. 17 (1970) 519.
[105] T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10 (1985) 65.
[106] J. L. Nightingale and J. K. Johnson, “Single frequency ring laser with two reflecting surface,” U.S. patent 5,052,815 (October 1, 1991).
[107] A. R. Clobes, M. J. Brienza, “Single frequency traveling wave Nd:YAG kaser,” Appl. Phys. Lett. 21 (1972) 265.
[108] C. Pedersen, P. L. Hansen, P. Buchhave, and T. Skettrup, “Single-frequency diode-pumped Nd:YAG prism laser with use of a composite laser crystal,” Appl. Opt. 36 (1997) 6780.
[109] K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Stable, high-power, single-frequency generation at 532nmfrom a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler,” Appl. Opt. 36 (1997) 4149.
[110] J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14 (1989) 24.
[111] T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single longitudinal mode operation and second harmonic generation of Nd:YAG microchip lasers,” Opt. Lett. 16 (1991) 1665.
[112] K. Wallmeroyh and P. Peuser, “High power, cw single frequency, TEM00, diode laser pumped Nd:YAG laser,” Electron. Lett. 24 (1988) 1086.
[113] G. J. Kintz and T. Baer, “Single frequency operation in solid state laser material with short absorption depths,” IEEE J. Quantum Electron. 26 (1990) 1457.
[114] R. Scheps and J. Myers, “A single frequency Nd:YAG ring laser pumped by laser diodes,” IEEE J. Quantum Electron. 26 (1990) 413.
[115] M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, “>8 watts of single frequency 532 nm light from a diode-pumped intra-cavity doubled ring laser,” Conf. on Lasers and Electro-Optics, CA, U.S.A., 1996, paper CPD-21.
[116] P. L. Huang, C. R. Weng, H. Z. Cheng, and S. L. Huang, “A passively Q-switched laser constructed by a two-mirror reentrant ring cavity,” Jpn. J. Appl. Phys. 40 (2001) L508.
[117] G. T. Maker, G. P. A. Malcolm, and A. I. Ferguson, “Single frequency diode pumped Nd:YAG ring laser with no intracavity elements,” Opt. Lett. 22 (1993) 1813.
[118] H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser,” Opt. Lett. 25 (2000) 542.
[119] S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-reentrant non-planar ring laser cavity,” IEEE J. Quantum Electron. 38 (2002) 1301.
[120] K. J. Kuhn, Laser Engineering (Prentice Hall, Upper Saddle River, 1998).
[121] Christian Hentschel, Fiber Optics Handbook (HP, 1988).
[122] H. J. R. Dutton, Understanding Optical Communications (IBM, 1998).
[123] D. Chen, C. L. Fincher, D. A. Hinkley, R. A. Chodzko, T. S. Rose, and R. A. Fields, “Semimonolithic Nd:YAG ring resonator for generating cw single frequency output at 1.06 ,” Opt. Lett. 20 (1995) 1283.

[124] P. L. Huang, H. Z. Cheng, and S. L. Huang, “Timing jitter reduction of passively Q-switched laser by a reentrant two-mirror ring cavity” Conf. on Lasers and Electro-Optics: CA, U.S.A., 2000, paper CThM2.
[125] I. Freitag, A. Tunnermann, and H. Welling, “Passively Q-switched Nd:YAG ring lasers with high average output power in single frequency operation,” Opt. Lett. 22 (1997) 706.
[126] Y. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov and S. P. Smyshlyaev, “Spatial and polarization characteristics of radiation from a cw neodymium doped garnet laser with a nonplanar ring resonator,” Sov. J. Quantum Electron. 11 (1981) 1421.
[127] H. Kiriyama, T. Yoshida, N. Srinivasan, H. Matsui, K. Nishida, M. Yamanaka, Y. Izawa, T. Yamanaka and S. Nakai, “Thermal Birefringence Effect on the Performance of a Laser-Diode Pumped Solid-State Laser,” Jpn. J. Appl. Phys. 36 (1997) 7197.
[128] S. Z. Kurtev, O. E. Denchev and S. D. Savov, “Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation” Appl. Opt. 32 (1993) 278.
[129] C. L. Tang, H. Statz, and G. deMars, Jr., “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys. 34 (1963) 2289.
[130] S. M. Jarrett and J. F. Young, “High-efficiency single-frequency cw ring dye laser,” Opt. Lett. 4 (1979) 176.
[131] R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38 (1981) 671.
[132] W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57 (1985) 61.
[133] K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, “Proposal of a semiconductor ring laser gyroscope,” Opt. and Quantum Electron. 31 (1999) 1219.
[134] A. E. Siegman, Lasers (University Science Books, California, 1986).
[135] D. Kaur, A. M. de Souza, J. Wanna, S. A. Hammad, L. Mercorelli, and D. S. Perry, “Multipass cell for molecular beam absorption spectroscopy,” Appl. Opt. 29 (1990) 119.
[136] D. Nickel, D. Kuhlke, and D. von der Linde, “Multipass dye-cell amplifier for high-repetition-rate femtosecond optical pulses,” Opt. Lett. 14 (1989) 36.
[137] J. Altmann, R. Baumgart, and C, Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20 (1981) 995.
[138] G. W. Haggquist and K. R. Naqvi, “A simple method for prolonging the effective pathlength in laser kinetic spectroscopy,” Rev. Sci. Instrum. (1994) 2188.
[139] J. A. Arnaud, “Non-orthogonal optical waveguides and resonators,” Bell Sys. Tech. J. (1970) 2311.
[140] P. K. Tien, J. P. Gordon, and J. R. Whinnery, “Fousing of a light beam of gussian field distribution in continuous and periodic lens-like media,” Proc. IEEE. 53 (1965) 129.
[141] D. Herriot, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3 (1964) 523.
[142] A. Yariv, Optical Electronics in Modern Communications. New York: Oxford University Press, 5th ed. (1997), ch. 2.2.
[143] 陳穎慧,“多次再入射之雙鏡式環型共振腔雷射的研究” ,國立中山大學光電工程研究所碩士論文,2001。
[144] X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L.Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33 (1997) 2286.
[145] Y. Bai, N. Wu, J. Zhang, J. Li, J. Xu, and P. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt. 36 (1997) 2468.
[146] R. S. Afzal, A. W. Yu, J. J. Zayhowski, and T. Y. Fan, “Single mode high peak power passively Q-switched diode pumped Nd:YAG laser,” Opt. Lett. 22 (1997) 1314.
[147] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31 (1995) 1738.
[148] J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19 (1994) 1427.
[149] R. Fluck, B. Braun, U. Keller, E. Gini, and H. Melchior, OSA Trends in Optics and Photonics Series: Advanced Solid-State Lasers. 10 (1997) 141.
[150] J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31 (1995) 1890.
[151] A. Agnesi, S. Dell’Acqua, and G. C. Reali, “1.5 Watt passively Q-switched diode-pumped cw Nd:YAG laser,” Opt. commun. 133 (1997) 211.
[152] A. Agnesi, S. Dell’Acqua, and G. C. Reali, “High performance Cr4+:YAG Q-switched CW diode pumped Nd:YAG laser,” Optical and Quant. Elec. 29 (1997) 429.
[153] S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38 (1999) 239.
[154] 崔宗元,“被動式Q開關Nd:YAG/Cr4+:YAG雷射研究” ,國立中山大學光電工程研究所碩士論文,1998。
[155] 王健鴻,“外加雷射調制之被動式Q開關Nd:YAG/Cr4+:YAG雷射研究” ,國立中山大學光電工程研究所碩士論文,1999。
[156] W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1999).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code