Responsive image
博碩士論文 etd-0623103-150519 詳細資訊
Title page for etd-0623103-150519
論文名稱
Title
二氧化錫薄膜之製備、微結構及功能性之研究
The study of fabrication, microstructure and functions of SnO2 thin films.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
311
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-05
繳交日期
Date of Submission
2003-06-23
關鍵字
Keywords
氣體偵測器
gas sensor
統計
Statistics
本論文已被瀏覽 5730 次,被下載 5794
The thesis/dissertation has been browsed 5730 times, has been downloaded 5794 times.
中文摘要
本研究分別以濺鍍法、化學霧化沉積法與旋轉鍍膜法等方式於康寧7059玻璃上沉積二氧化錫薄膜。主要目的是探討不同鍍膜方式與製程參數對二氧化錫薄膜的微結構、光電性與氣體偵測性之影響,並了解彼此的關係。
在濺鍍的過程中,改變濺鍍時的總壓力、基材溫度與氧氣濃度,得到缺乏孔洞的緻密薄膜。薄膜呈現(110)擇優取向,並含有{011}的雙晶面。在未摻雜其他元素下,薄膜對可見光的穿透率達85%以上,電阻率可以降至1.4×10-2 Ω-cm。適合用來當作透明導電薄膜之用。然而,緻密薄膜對CO氣體沒有任何的敏感度。
化學霧化沉積法使用SnCl4.5H2O+C2H5OH的混合溶液當為鍍膜溶液。改變攜帶氣體流量、基材溫度與沉積時間,得到不同形態的薄膜。低於350℃的沉積溫度下,薄膜為非晶質形態。在400℃以上沉積,薄膜呈現二氧化錫結晶。隨著沉積溫度增加,薄膜呈現(110)擇優取向的趨勢越明顯。薄膜對可見光的穿透率隨厚度與孔隙度增加而下降,通常可以維持85%的穿透率。在未做任何摻雜的情況下,最低的薄膜電阻率可達1.2×10-2 Ω-cm。是良好的透明導電膜。由於薄膜具有少量的孔隙存在,在膜厚低於100 nm以下,對CO氣體的敏感度低於2,不具有良好的氣體偵測性質。
以旋轉鍍膜方式可以得到多孔隙薄膜。鍍膜結構呈現隨機排列而沒有任何的擇優取向。由於具有高孔隙度,薄膜不具有良好的光電性質。以SnCl4.5H2O+NH4OH混合的SN溶液做為鍍膜溶液。溶液中含有電解質(NH4+與Cl-)得到的薄膜存在大量的龜裂裂縫,薄膜整體的表面積不高,對CO氣體的敏感度介於3~4之間。將溶液中的電解質除去後,得到具有細小微裂縫的薄膜,整體表面積高,對CO氣體的敏感度最高可達12.9。
在SN溶液中添加介面活性劑CTAB,並調整各溶液的相對莫爾濃度和加入HCl溶液。得到具有中孔結構的析出物。鍍膜後,薄膜具有高的表面積,對CO氣體的最高敏感度達到16.1。具有良好的氣體偵測性質。
Abstract

The tin oxide thin films were deposited on the Corning 7059 glass by sputtering, chemical mist deposition and spin coating. The influences of different process parameters on the microstructure, electrical-optical and gas-sensing properties were studied to establish their interrelation.
During the sputtering, the total pressure, the partial pressure of oxygen and substrate temperature were varied and dense thin films were obtained. The films possess (110) preferred orientation along with {011} twins. As no doping was attempted, transmittance of the films in the range of visible light is > 85 %. The lowest resistivity is ~1.4×10-2 Ω-cm. Therefore , they can be used as transparent conductive films. On the contrary, these dense films are not suitable for gas-sensor application.
Chemical Mist Deposition (CMD) method employs SnCl4.5H2O dissolved ethanol as starting solution. The flow rate of carrier gas, substrate temperature and deposition time were varied to obtain films of different features. Below 350℃ of substrate temperature, the deposition films are amorphous, while SnO2 crystalline films are obtained when temperature above 400℃. As (110) preferred orientation increases with deposition temperature. The films transmittance decrease with increasing thickness as well as porosity and maintains at a level around 85 %. The lowest resistivity of undoped films is 1.2×10-2 Ω-cm. These characteristic render them as good transparent conductive films. As dense films with negligible porosity, the sensitivity for CO gas detection of these films is less than 2 when thickness is less than 100 nm and can not serve as a decent gas sensor.
Porous films were obtained using spin-coating. No preferred orientation is found in these films. As porosity is high, the optical transmittance and electrical conductance are low. SnCl4.5H2O dissolve in DI water (with NH3(aq) added for promotion of hydrolysis) was used as starting solution. The starting solution contains large amounts of electrolytes of NH4+ and Cl-, and the resultant films contain large amounts of small cracks with low surface area. The sensitivity of CO gas is 3~4. If the electrolytes are eliminated before deposition, finer cracks are obtained in the films with increased surface area, and the sensitivity for CO gas detection can reach 12.9.
Meso-structure precipitates were obtained when the starting solution was mixed with CTAB(aq). The resultant solution yield films of high surface area and sensitivity for CO gas can reach 16.1, rendering them as good gas sensors.
目次 Table of Contents
致謝………………………………………………………………….Ⅰ
英文摘要.…………………………………………………………..Ⅱ
中文摘要.…………………………………………………………..Ⅳ
目錄………………………………………………………………….Ⅵ
圖目錄……………………………………………………………ⅩⅠ
表目錄….……………………………………………………. ⅩⅩⅡ
第一章 研究背景與方向….……………………………………….1
1.1 二氧化錫薄膜之功能及其應用…..……………………….1
1.1.1 二氧化錫之透明導電膜及其應用…...………………1
1.1.2 二氧化錫之氣體偵測性及其應用…………………...2
1.2 二氧化錫薄膜之製備方式 ……………………………….2
1.3 二氧化錫的薄膜製程、微結構與功能之關係…………..4
1.4 本研究之製程選擇與研究重點…………………………...5
1.4.1 濺鍍(sputtering)………………………………………..5
1.4.2旋轉鍍膜法(spin coating)……………………………..6
1.4.3化學霧化沈積法(chemical mist deposition;CMD)..6
第二章 文獻回顧……………………………………………………8
2.1 二氧化錫結構與特性簡介…………………………………8
2.2 二氧化錫之導電與透光機制………………………………9
2.2.1 導電機制………………………………………………..9
2.2.2 透光率計算……………………………………………10
2.3 二氧化錫氣體偵測模型的導電機制……………………13
2.3.1半導體氣體偵測器的介紹……………………………13
2.3.2 二氧化錫氣體偵測器的導電原理………………….15
2.3.3 二氧化錫氣體偵測模型……………………………..20
2.3.3.1 Double Schottky Model………………………….20
2.3.3.2 Neck Model……………………………………….22
2.3.3.3 Super Fine Particle Model………………………27
2.3.3.4 緻密化薄膜的導電模式………………………..29
2.4 溶膠-凝膠法………………………………………………..32
2.4.1 水解與縮合反應………………………………………32
2.4.2 溶膠-凝膠鍍膜………………………………………..35
2.4.2.1 旋轉鍍膜法………………………………………35
2.4.2.2 化學霧化沉積法…………………………………35
2.5 中孔結構……………………………………………………37
2.6 二氧化錫透明導電膜……………………………………..39
2.6.1 濺鍍法製備的薄膜…………………………………..39
2.6.2 熱解(pyrolysis)法製備的薄膜………………………43
2.6.2.1 噴霧熱解法製備的薄膜………………………..43
2.6.2.2 化學霧化沉積法製備的薄膜…………………..44
2.7 二氧化錫氣體偵測膜……………………………………..45
2.7.1 濺鍍法製備的薄膜…………………………………..45
2.7.2 旋轉鍍膜(spin coating)法的薄膜…………………..47
2.7.3 熱解法製備的薄膜…………………………………..48
2.7.3.1 噴霧熱解法的薄膜特性………………………..48
2.7.3.2 化學霧化沉積法製備的薄膜…………………..49
第三章 實驗方法與步驟…………………………………………50
3.1 基材之清洗…………………………………………………50
3.2以濺鍍方式製備二氧化錫薄膜…………………………..52
3.3 以化學途徑製備二氧化錫薄膜………………………….56
3.3.1 溶膠(sol)的準備………………………………………56
3.3.1.1 旋轉鍍膜用的SnCl4•5H2O + NH4OH
(簡稱SN)溶液………………………………………56
3.3.1.2旋轉鍍膜用的CTAB + SnCl4•5H2O +
NaOH(CSNa)、CTAB + SnCl4•5H2O +
NH4OH (CSN)、CTAB + SnCl4•5H2O(CS)
與CTAB + SnCl4•5H2O + HCl (CSH)溶液………59
3.3.1.3化學霧化沈積法的沉積溶液……………………66
3.3.2 溶膠-凝膠法的鍍膜方式…………………………….68
3.3.2.1 旋轉鍍膜法………………………………………68
3.3.2.2 化學霧化沈積法…………………………………73
3.4 X光繞射(X-ray diffraction)分析…………………………76
3.5 掃描式電子顯微鏡(SEM) 分析…………………………76
3.5.1 截面(cross-section)觀察…………………………….76
3.5.2 表面(Top-view)觀察…………………………………77
3.6 穿透式電子顯微鏡(TEM)分析…………………………..79
3.6.1 表面試片製作…………………………………………79
3.6.2 截面試片製作…………………………………………80
3.7熱重分析法(TGA)的測定………………………………….81
3.8熱差分析儀(DSC)的測定………………………………….81
3.9 Hall效應電性量測…………………………………………82
3.10 光性量測…………………………………………………..83
3.11氣體偵測系統的建立……………………………………..84
第四章 實驗結果…………………………………………………..87
4.1以濺鍍方式製備二氧化錫薄膜之實驗結果…………….87
4.1.1 X-光繞射分析………………………………………….87
4.1.1.1 濺鍍壓力對薄膜結構的影響…………………..87
4.1.1.2 基材溫度對薄膜結構的影響…………………..89
4.1.1.3 氧氣濃度對薄膜結構的影響…………………..89
4.1.2薄膜厚度與薄膜表面之分析………………………...92
4.1.2.1濺鍍參數對薄膜厚度的影響……………………92
4.1.2.2表面結構的分析………………………………….92
4.1.3 薄膜的穿透率分析………………………………….101
4.1.4 濺鍍薄膜的電性量測結果…………………………104
4.1. 5 濺鍍薄膜對氣體偵測敏感性………………………107
4.2化學霧化沉積法製備二氧化錫薄膜之實驗結果……..108
4.2.1 X光繞射實驗…………………………………………108
4.2.2掃描式電子顯微鏡實驗結果……………………….113
4.2.3 薄膜的穿透率分析………………………………….132
4.2.4 電性量測實驗的結果………………………………134
4.2.5 氣體偵測的結果…………………………………….139
4.3 旋轉鍍膜方式製備二氧化錫薄膜之實驗結果……….141
4.3.1 析出物、凝膠、乾膠及粉末之鑑定………………141
4.3.1.1 TGA與DSC結果……………………………….141
4.3.1.2 XRD及TEM結果………………………………150
4.3.2 以旋轉鍍膜方式得到的二氧化錫薄膜…………..165
4.3.2.1 X光繞射結果……………………………………165
4.3.2.2 掃描式電子顯微鏡結果………………………171
4.3.2.3 穿透式電子顯微鏡結果………………………179
4.3.2.4 氣體偵測………………………………………..182
4.4 以含介面活性劑的溶液,經旋轉鍍膜法製備
二氧化錫薄膜之實驗結果………………………….184
4.4.1 粉末鍛燒……………………………………………..184
4.4.2以SnCl4.5H2O +NaOH+CTAB(CSNa)合成
方式製備二氧化錫薄膜…………………………….189
4.4.3以CTAB+SnCl4.5H2O +NH4OH (CSN)合成
方式製備二氧化錫薄膜…………………………….192
4.4.3.1改變氨水(NH4OH)濃度對薄膜性質的影
響………………………………………………………192
4.4.3.2改變介面活性劑(CTAB)濃度對薄膜性質
的影響…………………………………………………201
4.4.3.3改變四氯化錫(SnCl4.5H2O)濃度對薄膜
性質的影響…………………………………………..210
4.4.4以CS合成方式製備二氧化錫薄膜……………….219
4.4.5以CSH合成方式製備二氧化錫薄膜……………..226
第五章 討論………………………………………………………244
5.1 二氧化錫的微結構……………………………………….244
5.1.1 以濺鍍方式製備二氧化錫薄膜之微結構……….244
5.1.2 以CMD方式製備二氧化錫薄膜之微結構……..248
5.1.2.1 攜帶氣體流量對薄膜微結構的影響………..248
5.1.2.2 基材溫度對薄膜微結構的影響………………249
5.1.3 以溶膠-凝膠析出物及鍍膜之微結構…………….251
5.1.3.1 SN溶膠-凝膠析出物及鍍膜之微結構………251
5.1.3.2 CSNa溶膠-凝膠析出物及薄膜之微結構……260
5.1.3.3 CSN、CS與CSH溶膠-凝膠析出物及薄
膜之微結構………………………………………..260
5.2 二氧化錫薄膜的光電性質………………………………263
5.2.1濺鍍薄膜之光電性質………………………………..263
5.2.2 CMD薄膜之光電性質………………………………266
5.3 二氧化錫薄膜之氣體偵測………………………………268
5.3.1 緻密薄膜……………………………………………..268
5.3.2 多孔隙薄膜…………………………………………..270
第六章 結論………………………………………………………277
參考文獻…………………………………………………………..279
附錄………………………………………………………………..287
參考文獻 References
[1] Z. M. Jarzebski and J. P. Marton: J. Electrochem. Soc. –Rew. New, 123(7)(1976)199C.
[2] Z. M. Jarzebski and J. P. Marton: J. Electrochem. Soc. –Rew. New, 123(9)(1976)299C.
[3] Z. M. Jarzebski and J. P. Marton: J. Electrochem. Soc. –Rew. New, 123(10)(1976)333C.
[4] W. A. Deer, R. A. Howie and J. Zussamn: Proc 1992"An Introduction to the Rock-Forming Monerals" P534.
[5] C. Klein and C. S. HurlBut: Proc 1993"Manual of Mineralogy" P383.
[6] E. Leja. J. Korecki, K. Krop and K. Toll: Thin Solid Films, 59(1979)147.
[7] E. Leja. T. Pisarkiewicz and A. Kolodziej: Thin Solid Films, 67(1980)45.
[8] N. S. Murthy and S. R. Jawalekar: J. Inst. Electron. Telecommun. Eng., 30(1984)97.
[9] V. K. Jain and A. P. Kulshreshtha: Sol. Energy Mater., 4(1981) 151.
[10] G. H. Heilmier: Sci. Am., 222(4)(1970)100.
[11] R. G. Goodchild, J. B. Webb and D. F. William: J. Appl. Phys., 57(6)(1985)2308.
[12] T. Minami, H. Nanto and S. Takata: Jpn. J. Appl. Phys., 27(3)(1988)L287.
[13] S. M. Kudryavtsea, A. A. Vertegal, S. V. Kalinin, N. N. Oleynikov, L. I. Ryabova and L. Leonid: J. Mater. Chem., 7(11) (1997)2269.
[14] T. Kimura, S. Inada and T. Yamaguchi: J. Mater.Sci. 24(1989) 220.
[15] S. M. Sze: Proc 1994"Semicoductor Sensors" Chap. 8 P399.
[16] G. Sanon, R. Rup and A. Mansingh: Thin Solid Films, 190 (1990)287.
[17] Y. Liu, W. Zhu, O. K. Tan, X. Yao and Y. Shen: J. Mater. Sci. –Mater. In Electro., 7(1996)279.
[18] D. Das and R. Banerjee: Thin Solid Films, 147(1987)321.
[19] M. D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rell and P. Siciliano: Sensors and Actuators B24~25(1995)465.
[20] T. Moohida, K. Kikuchi. T. Kordo, H. Ueno and Yoshinobu: Sensors and Actuators B24~25(1995)433.
[21] J. L. Huang, D. W. Kuo, B. Y. Shew: Surface and Coatings Technology, 79(1996)263.
[22] A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet: Thin Solid Films, 315(1998)17.
[23] J. Bruneaux, H. Cachet, M. Froment and A. Messad: Thin Solid Films, 197(1991)129.
[24] G. Beshkov, K. Kolentsov, L. Yourkova, Arachkova, D. Mateeva: Mater. Sci. and Engin., B30(1995)1.
[25] E. Shanthi, V. Dutta, A. Banerjee and K. L. Chopra: J. Appl. Phys. 51(12)(1980)6243.
[26] V. M. Anishchik, L. I. Konyushko, V. A. Yanrmolovich, D. A. Gorbachevskuu, And T. G. Gerasimova: Inorganic Mater., 31(3) (1995)313.
[27] D. J. Yoo, J. Tamaki, S. J. Park, N. Miura and N. Yamazoe: J. Am. Ceram. Soc., 79(8)(1996)2201.
[28] C. Cobianu, C. Savaniu, O. Buiu, D. Dascalu, M. Zaharescu, C. Parlog, A. V. D. Berg and B. Pecz: Sensors and Actuators B, 43(1997)114.
[29] J. P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan and J. A. Roger: Thin Solid Films, 247(1994)162.
[30] Y. Kobayashi, M. Okamoto and A. Tomita: J. Mater. Sci., 31 (1996)6125.
[31] A. E. D. Souza, S. H. Monteiro, C. V. Santilli and S. H. Pulcinelli: J. Mater. Sci. –Mater. In Electro., 8(1997)265.
[32] H. Iida, T. Mishuku, A. Ito and K. Kato: Solar Energy Materials, 17(1988)407.
[33] A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet and R. R. Clemente: Thin Solid Films, 266(1995)20.
[34] J. S. Maudes and T. Rodriguez: Thin Solid Films, 69(1980)183.
[35] N. Taguchi: Gas Detecting Divice, U. S. Patent, 3,631,436 (1971).
[36] S. A. Pianaor: J. Mater. Sci. Lett., 14(1995)692.
[37] M. Ippommatsu, H. Ohnishi, H. Sasaki and T. Matsumoto: J. Appl. Phys., 69(1991)8368.
[38] G. Korotchenkov, V. Brynzari and S. Dmitriev: Mater. Sci. and Engin., B56(1999)195.
[39] Y. S. Choe: Sensors and Actuators, B77(2001)200.
[40] Theo Hahn: Proc. 1987 International Tables for Crystallography Vol.A Space-Group Symmetry, Second Editon P575.
[41] Linus Pauling: Proc. 1989 “The Nature of the Chemical Band”, P514.
[42] T. B. Massalski: Proc. 1990 “Binary Alloy Phase Diagrams”, P2919.
[43] L. J. Meng and M. P. dos Santos: Vacuum, 45(1994)1191.
[44] J. C. Manifacier and J. Gasiot:J. Phys. E:Sci. Instru., 9(1976)1002.
[45] 范成至:以二氧化錫為氣體感測材料之特性探討,國立交通大學光電工程研究所碩士論文,1994。
[46] H. Pink, L. Treitinger and L. Vite: Japanses J. of Appl. Phys., 19(1980)513.
[47] J. Watson, K. Ihokura and G. S V Coles: Meas. Sci. Technol., 4(1993)711.
[48] S. M. Sze: Proc 1994"Semicoductor Sensors" Chap. 8 P386.
[49] S. R. Morrison: Sensors and Technol., 2(1982)329.
[50] H. Ihokuro: Sensors and Technol., 3(1983)73.
[51] S. Sakaki, I. Doi and H. Mitsufuji: Denchisochi Kenkyukai Shiryou EDD75-50(1975).
[52] M. Egashira, T. Matsumoto and Y. Shimizu: Sensors and Actuators, 14(1988)205.
[53] H. Ogawa, M. Nishida and A. Abe: J. Appl. Phys., 53(1982) 4448.
[54] H. Windischmann and P. Mark: J. Electrochem. Soc., 126(1979)627.
[55] E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopar: Thin Solid Films, 71(1980)237.
[56] J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Walliams and B. C. Tofield: J. Chem. Soc. Faraday Trans., 184(1988)441.
[57] T. Rantala, Acta Univ. Oul. C. Technica 96, Oulu University Press, Oulu, Finlamd, 1997, pp. 1-67 Ph. D. Thesis.
[58] R. S. Hiratsuka, S. H. Pulcinelli and C. V. Santilli: J. Non-Crys. Solids, 121(1990)76.
[59] J. F. Goodman and S. J. Gregg: J. Chem. Soc., 237(1960)1162.
[60] R. S. Hiratsuka, C. V. Santilli and D. V. Silva: J. Non-Crys. Solids, 147-148(1992)67.
[61] R. T. Presecatan, S. H. Pulcinelli and C. V. Santilli: J. Non-Crys. Solids, 147-148(1992)304.
[62] Q. Chen, Y. Qian, G. Zhou and Y. Zhang: Thin Solid Films, 264(1995)25.
[63] Q. Li, X. Yuan, G. Zeng and S. Xi: Mater. Chem. Phys., 47(1997)239.
[64] G. Blandent, M. Court and Y. Lagarde: Thin Solid Films, 77(1981)81.
[65] J. Dutta, P. Roubeau, T. Emei-aud, J. M. Laurent, A. Smith, F. Leblanc and J. Pen-in: Thin Solid Films, 239(1994)150.
[66] J. Y. Ying, C. P. Mehnert and M. S. Wong: Angew. Chem. Int. Ed., 38(1999)56.
[67] K. G. Severin, T. M. Abdel-Fattah and T. J. Pinnavaia: Chem. Commun., (1998)1471.
[68] F. Chen and M. Lin: Chem. Commun., (1999)1829.
[69] Y. D. Wang, C. L. Ma, X. D. Sun and H. D. Li: Inorg. Chem. Commun., 4(2001)223.
[70] Y. D. Wang, C. L. Ma, X. D. Sun and H. D. Li: Inorg. Mater. Letters., 5(2001)285.
[71] G. B. Marchwicka, L. K. Stepniewska and A. Misiuk: Thin Solid Films, 113(1984)215.
[72] M. R. Soares, P. H. Dionisio, I. J. R. Baumvol and W. H. Schreiner: Thin Solid Films, 214 (1992)6.
[73] L. J. Meng and M. P. dos Santos: Thin Solid Films, 237 (1994)112.
[74] Y. S. Chung, A. Hubenko, L. Meyering, M. Schade and J. Zimmer: J. Vac. Sci. Technol., A15(3)(1997)1108.
[75] R. G. Goodchild, J. B. Webb and D. F. Williams: J. Appl. Phys., 57(6)(1985)2308.
[76] T. Minami, H. Nanto and S. Takata: Jap. J. Appl. Phys., 27(1988)L287.
[77] J. Bruneaux, H. Cachet, M. Froment and A. Messad: Thin Solid Films, 197(1991)129.
[78] M. D. Giulio, D. Manno, G. Micocci, R. Rella, P. Sililiano and A. Tepore: Solar Energy Materials and Solar Cells, 31(1993) 235.
[79] G. Korotchenkov, V. Brinzari, J. Schwank M. DiBattista and A Vasiliev: Sensors and Actuator, B77(2001)244.
[80] G. Korotchenkov, M. DiBattista, J. Schwank and V. Brinzari: Mater. Sci. and Engin., B77(2000)33.
[81] J. Dutta, P. Roubeau, T. Emei-aud, J. M. Laurent and A. Smith: J. Mater. Sci. 30(1995)53.
[82] A. Smith: Thin Solid Films, 376(2000)47.
[83] J. M. Laurent, A. Smith, D. S. Smith, J. P. Bonnet and R. R. Clemente: Thin Solid Films, 292(1997)145.
[84] M. D. Giulio, G. Micocci, R. Rella, P. Siciliano and A. Tepore: Sensors and Actuator, B23(1995)193.
[85] P. Serrini, V. Briois, M. C. Horrillo, A. Traverse and L. Manes: Thin Solid Films, 304(1997)113.
[86] M. C. Horrillo, A. Serventi, D. Rickerby and J. Gutierrez: Sensors and Actuator, B58(1999)474.
[87] D. J. Yoo, J. Tamaki, S. J. Park, N. Miura and N. Yamazoe: J. Electrochem. Soc., 142(7)(1995)L105.
[88] V. M. Anishchik, L. I. Konyushko, V. A. Yanrmolovich, D. A. Gorbachevskuu, And T. G. Gerasimova: Inorganic Mater., 31(3) (1995)313.
[89] Z. Jin, H. J. Zhou, Z. L. Jin, R. F. Savinell and C. C. Lin: Sensors and Actrator, B52(1998)188.
[90] N. S. Baik, G. Sakai, K. Shimanoe, N. Miura and N. Yamazoe: Sensors and Actuator, B65(2000)97.
[91] N. S. Baik, G. Sakai, N. Miura and N. Yamazoe: Sensors and Actuator, B63(2000)74.
[92] 許慶雄:以超音波霧化製程製備之SnO2薄膜性質,國立中山大學材料科學與工程研究所碩士論文,2001。
[93] 偉斯企業提供或上網http//www.corning.com。
[94] Y. S. Touloukian, R. K. Kirby, R. E. Taylor and T. Y. R. Lee: Proc. 1977, New York “Thermophysical properties of matter volume 13: Thermal expansion nonmetallic solids”, P386.
[95] S. K. Ghandhi: Proc. 1994 “VLSI Fabrication priciples: Silison and Gallium Arsenide Second Edition”, P525.
[96] 汪建民:1999年“陶瓷技術手冊“, P7。
[97] C. W. Scherer: Proc 1990"Sol-Gel Science" Chap. 4 P240.
[98] C. W. Scherer: Proc 1990"Sol-Gel Science" Chap. 4 P241.
[99] C. W. Scherer: Proc 1990"Sol-Gel Science" Chap. 1 P23.
[100] C. W. Scherer: Proc 1990"Sol-Gel Science" Chap. 4 P243.
[101] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky: Nature 368(1994)317.
[102] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chemlka, F. Schuth, G. D. Stucky: Chem. Mater. 6(1994)1176.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code