Responsive image
博碩士論文 etd-0623106-150113 詳細資訊
Title page for etd-0623106-150113
論文名稱
Title
以向量邊界元素法研究光子晶體光纖
Study of Photonic Crystal Fibers using Vector Boundary Element Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-10
繳交日期
Date of Submission
2006-06-23
關鍵字
Keywords
色散、極化、邊界元素法、光子晶體光纖
polarization, boundary element method, chromatic dispersion, photonic crystal fiber
統計
Statistics
本論文已被瀏覽 5688 次,被下載 1773
The thesis/dissertation has been browsed 5688 times, has been downloaded 1773 times.
中文摘要
本論文係利用全波向量方程,以向量邊界元素法作為分析及設計光子晶體光纖(微結構光纖或孔隙光纖)之工具。首先,將模擬結果與文獻資料比較確認向量邊界元素法計算光子晶體光纖結構之正確性及效率。接著以之探討光子晶體光纖之優異特性之一—極化特性;分析橢圓形氣孔光子晶體光纖的極化效應及將之埋入步階變化折色率纖核中的極化特性的變化。為分析色散特性,應用所發展之高效且精確之色散參數計算演算法在光子晶體色散特性的分析。探討均勻大小氣孔之光之晶體光纖、最內圈氣孔小於外圈氣孔之光子晶體光纖及最內兩圈氣孔小於外圈氣孔之光子晶體光纖的色散特性。最後據以設計出高寬頻超平坦色散之光子晶體光纖,其零色散及色散平坦波段從波長1.2微米到1.7微米,頻寬達400奈米以上,足以涵蓋整個光通訊波段。
Abstract
Based on a full-wave formulation, a vector boundary element method (VBEM) is proposed to model the photonic crystal fibers (PCFs) (microstructured fibers). The accuracy and efficiency of the approach are confirmed by comparing the results calculated with those in previous literatures. With employing the VBEM, the guiding characteristics, including the effective indexes, vector mode patterns, and the polarization properties of the PCFs are investigated. There polarization characteristics of the PCFs with elliptical air holes (EPCFs) and the one ring air-hole EPCF embedded in the step-index core are studied and discussed. In addition, based on the VBEM formulations, a novel and efficient numerical approach to calculate the dispersion parameters of the PCFs is also proposed. The effect of the PCF geometrical structure on the group velocity dispersion property is reviewed, and then the one-ring defect and two-ring defect PCFs are studied and designed for the ultra-flattened dispersion applications. As an example, a four-ring (two-ring defect) PCF with flattened dispersion of ±0.25 ps/km/nm from 1.295μm to 1.725μm wavelength is numerically demonstrated.
目次 Table of Contents
Abstract………………………………………………………………...Ⅰ
Contents………………………………………………………………...Ⅳ
List of Figures……………………………………………………...…..Ⅶ
1 Introduction…………………………………………………………1
1.1 Motivation and Literature Survey……………...…………………………….1
1.2 Contributions of This Work……………………………………………….…4
1.3 Chapter Outlines………………………………………………………..……5
2 Vector Boundary Element Method……..………………………….8
2.1 Overview…………………………………………………………………...8
2.2 Surface Integral Equation Formulations (SIEFs)……………………..……9
2.3 An Efficient Approach for Dispersion Calculation……………………….11
2.3.1 Formulations………………………………………………………….12
2.3.2 Numerical Procedures………………………………………..………...15
2.4 Accuracy and Efficiency Check…………………………………..…...….20
2.5 Leakage Property of PCF and Loss Issue in VBEM……………..……….21
2.6 Some Numerical Issues…………………………………………………...23
2.6.1 Numerical Convergence……………………………………………...23
2.6.2 Consideration of Ring Number………………………………………24
2.6.3 Wavelength Dependence of Refractive Index……..…………………27
2.7 Summary………………………………………………………………….29
3 Polarization Effect of Elliptical Holey Fibers……………………47
3.1 Introduction………………………………………………………….……47
3.2 Birefringence of Elliptical Hole PCF…………………………………..…48
3.3 Field Confined High Birefringent HF………………………………..…...51
3.3.1 Overview……………………………………………………………...51
3.3.2 Polarization Properties of FCHFs………………………………….…52
3.3.3 Central Hole Assistance on Birefringence in FCHF…………..……...54
3.4 Summary………………………………………………………………….56
4 Dispersion Control in Photonic Crystal Fibers………...………...72
4.1 Introduction……………………………………………………………….72
4.2 Dispersion Characteristics of PCF……...……………………………...…73
4.2.1 Waveguide Dispersion and Scaling Transformation……..………..….73
4.2.2 Applications Related to Chromatic Dispersion………………………75
4.2.3 Dispersion Properties of the One-ring Defect PCF……..…………....76
4.3 Design of Ultra-flattened Dispersion………..………………………..…..78
4.3.1 Overview……..………………………………………………………78
4.3.2 Design of Novel Ultra-flattened Dispersion PCF……………….……79
4.4 Summary………………………………………………………………….83
5 Conclusion………………………………………………………….99
Bibliography………………………………………………………..…101
Biography……………………………………………………….….…109
Publication List………………………………………………….……110
參考文獻 References
[1] T. K. Birks, D. M. Atkin, G. Wyangowski, P. St. J. Russell, and P. J. Roberts, “2d photonic band gap structures in fibre form,” in Photonic Band Gap Materials, (C. M. Soukoulis, Ed.), Kulwer, Dordrecht/Norwell, MA, 1996.
[2] J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguies,” Opt. Fiber Technol., vol. 5, pp. 305-330, Jul. 1999.
[3] T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibers: An endless variety,” IEICE Trans. Electron., vol. E84-C, pp. 585-592, May 2001.
[4] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-sillica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547-1549. Oct. 1996.
[5] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961-963, Jul. 1997.
[6] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fiber,” Science, vol.282 pp. 1476-1478, Nov. 1998.
[7] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537-1539, Sept. 1999.
[8] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol.58, pp.2059, 1995.
[9] J. D. Joannopoulos, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, Princeton, 1995.
[10] P. St. J. Russell, D. M. Atkin, and T. K. Birks, “Bound modes of two dimensional photonic crystal waveguides,” Quantum Optics in Wavelength Scale Structures, 1996.
[11] H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys., vol. 79, pp.7483, 1996.
[12] S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B, vol. 12, pp.1267, 1997.
[13] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. lett., vol. 34, pp.1347-1348, Jun. 1998.
[14] M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity in photonic crystal fibers,” Electron. Lett., vol. 35, pp. 63-64, Jan. 1999.
[15] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807-809, Jul. 2000.
[16] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett., vol. 25, pp.25-27, Jan. 2000.
[17] M. J. Gander, R. McBride, J. D. C. Jones, T. A. Birks, J. C. Knight, P. St. J. Russell, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Measurement of the wavelength dependence of beam divergence for photonic crystal fiber,” Opt. Lett., vol. 24, pp. 1017-1019, Aug. 1999.
[18] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, no. 18, pp. 1325-1327, Sept. 2000.
[19] T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “ Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588-590, Jun. 2001.
[20] M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. lightwave technol., vol. 19, pp.495-503, Apr. 2001.
[21] K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett., vol. 14, pp.1291-1293, Sept. 2002.
[22] A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24, pp. 276-278, Mar. 1999.
[23] D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol., vol. 17, pp. 2078-2081, Nov. 1999.
[24] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol., vol. 18, pp. 50-56, Jan. 2000.
[25] M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett., vol. 26, pp. 488-490, Apr. 2001.
[26] K. Saitoh, and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, no. 7, pp. 927-933, Jul. 2002.
[27] F. Brechet, J. marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber technol., vol. 6, pp. 181-191, Apr. 2000.
[28] T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting larger anomalous dispersion and low loss below 1dB/km,” in Proc. Opt. Fiber Commun. (OFC) Conf., vol. PD5-1, Anaheim, CA, Mar. 2001.
[29] C. C. Su, “A surface integral equation method for homogeneous optical fibers and coupled image lines of arbitrary cross section,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1114-1120, 1985.
[30] N. Guan, S. Habu, K. Tatsuhiro, K. Himeno, and A. Wada, “Boundary Element Method for Analysis of Holey Optical Fibers,” J. Lightwave Technol., vol. 21, pp.1787-1792, Aug. 2003.
[31] T. L. Wu and C. H. Chao, “Photonic Crystal Fiber Analysis through the Vector Boundary-Element Method: Effect of Elliptical Air Hole,” IEEE Photon. Technol. Lett., vol. 16, pp. 126-128, Jan. 2004.
[32] X. Y. Wang, J. J. Lou, C. Lu, P. Shum, C. L. Zhao, P. Roy Chaudhuri, and M. Yan, “Full-vector analysis of photonic crystal fibers using the boundary element method,” IEEE ICICS-PCM 2003 Singapore, pp. 1293-1297, Dec. 2003.
[33] X. Y. Wang, J. J. Lou, C. Lu, P. Shum, C. L. Zhao, and W. T. Ang, “Modeling of PCF with multiple reciprocity boundary element method,” Opt. Expr., vol. 12, pp. 961-966, Mar. 2004.
[34] D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Expr., vol. 10, pp. 1314-1319, Nov. 2002.
[35] K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow loss anf long length photonic fiber,” J. Lightwave Technol., vol. 22, pp. 7-10, Jan. 2004.
[36] G. P. Agrawal, Nonlinear Fiber Optics (Academeic, New York, 1989).
[37] M. Koshiba, “Full vector analysis of photonic crystal fibers using the finite element method,” IEICE Electron, vol. E85-C, no. 4, pp. 881-888, 2002.
[38] M. Koshiba, and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 1313-1315, December 2001.
[39] J. W. Fleming, “Material dispersion in lightguide glasses,” IEE Electron. Lett., vol. 14, pp.326, 1978.
[40] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett., vol. 25, pp.25-27, Jan. 2000.
[41] M. J. Steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett., vol. 26, pp.229, 2001.
[42] M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, “Low-loss photonic crystal fibers for transmission system and their dispersion properties,” Opt. Expr., vol. 12, pp.1372-1376, 2004.
[43] L. P. Shen, W. P. Huang, and S. S. Jian, “Design and optimization of photonic crystal fibers for broadband dispersion compensation,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 540–542, 2003.
[44] Y. Ni, L. Zhang, L. An, J. Peng and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett., vol.16, no. 6, pp.1516, 2004
[45] T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Expr., vol. 14, no. 2, pp.893, 2006.
[46] V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trad-offs,” J. Opt. Soc. Am. B, vol. 20, pp. 1427-1436, 2003.
[47] K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” J. of Selected Top. in Quantum Electron., vol. 10, no. 5, pp. 876, 2004.
[48] K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Expr., vol. 11, no. 13, 2003.
[49] A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andr’es, and P. S. J. Russell, “Designing a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett. Vol. 24, pp. 325-327, 1999.
[50] K. Saitoh and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Expr., vol. 11, pp. 843-852, 2003.
[51] F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., vol.16, no.4, pp.1065, 2004.
[52] T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with larger area and low confinement loss,” J. Lightwave Technol., vol. 23, no. 12, pp.4178, 2005.
[53] K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Expr., vol. 13, no. 21, pp.8365, 2005.
[54] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790–792, 2000.
[55] W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Expr., vol. 10, pp. 609-613, 2002.
[56] T. L. Wu, J. S. Chiang, and C. H. Chao, “A Novel Approach for Calculating the Dispersions of Photonic Crystal Fibers,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1492-1494, 2004.
[57] W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Expr., vol. 10, pp. 609-613, 2002
[58] V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core Silica Holey Fibers: Nonlinearity and Confinement Loss Trade-offs,” J. Opt. Soc. Am. B, Vol. 20, pp.1427-1436, Jul. 2003.
[59] K. Tajima, J. Zhao, K. Nakajima, and K. Sato, “Ultralow Loss and Long Length Photonic Crystal Fiber,” J. Lightwave Technol., vol. 22, pp.7-10, Jan. 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code