Responsive image
博碩士論文 etd-0623110-155445 詳細資訊
Title page for etd-0623110-155445
論文名稱
Title
微波與離子液體提升生質柴油產率之研究
Microwave and ionic liquid to enhance the yield of biodiesel study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-09
繳交日期
Date of Submission
2010-06-23
關鍵字
Keywords
離子液體、廢食用油、生質柴油、微波、轉酯化反應
Biodiesel, Microwave, Ionic liquid, Waste cooking oil, Transesterification
統計
Statistics
本論文已被瀏覽 5638 次,被下載 0
The thesis/dissertation has been browsed 5638 times, has been downloaded 0 times.
中文摘要
本研究分別以大豆油、棕櫚油及廢食用油為原料油,探討不同加熱方式、反應時間、醇油比、反應溫度,功率、催化劑種類及催化劑濃度對生質柴油產率之影響,且利用微波加熱縮短轉酯化反應所需時間使反應更完全。

利用傳統加熱與微波加熱生產生質柴油之最佳操作條件中,分別為傳統加熱以棕櫚油為原料油,甲醇鈉0.75 wt%、醇油比為6:1、反應時間90 min 及反應溫度60 ℃,可得最佳產率為98.1%;微波加熱則為甲醇鈉濃度0.75 wt%、醇油比為6:1、反應時間3 min 及功率
750 W 可得最佳產率99.5%。

以大豆油與棕櫚油為原料油生產生質柴油時,其產率較廢食用油高,其原因為廢食用油組成較為複雜且黏滯度較高。而不同催化劑應用於轉酯化反應中,甲醇鈉效果較氫氧化鈉佳,因其反應過程不會生成水產生皂化反應使產物分離困難; 當以[Pyr12CN][Cl] 、[MorEtH][HSO4] 、[MorMeMe][MeSO4] 、[PyrMeH][HSO4] 及
[MorMeEt][EtSO4] 等五種不同類型離子液體為催化劑, 以[Pyr12CN][Cl]催化效果為最佳,其最佳操作條件為濃度2 wt%、醇油比6:1、反應時間6 min 及功率750 W 可得最佳產率93.2%。
Abstract
Soybean oil, palm oil and waste cooking oil as feedstock were used to measure the effects of different heating methods, reaction time, molar ratio of methanol to oil, temperature, power, catalyst type and catalyst concentration on the biodiesel yield in this study. Additionally, reducing reaction time for the transesterification reaction used microwave heating to make more complete.

The optimized operating conditions of conventional heating used palm oil, concentration for 0.75 wt% sodium methoxide, molar ratio of methanol to oil for 6:1, reaction time for 90 min and reaction temperature for 60 ℃ offered the best yield of 98.1%. the microwave heating used palm oil, concentration for 0.75 wt% sodium methoxide, molar ratio of methanol to oil for 6:1, reaction time for 3 min and power for 750 W offered the best yield of 99.5%

Used soybean oil and palm oil as biodiesel feedstock production, its yield was higher than the waste cooking oil. This reason is caused by composition complex and high viscosity of waste cooking oil compare with pure vegetable oil. The catalyst of sodium methoxide is higher effective than sodium oxide used in transesterification reaction, because the reaction process will not formation of water and saponification. Use ionic liquid [Pyr12CN][Cl], [MorEtH][HSO4], [MorMeMe][MeSO4], [PyrMeH][HSO4] and [MorMeEt][EtSO4] as biodiesel catalyst, the optimized operating conditions of concentration for 2.00 wt% [Pyr12CN][Cl], molar ratio of methanol to oil for 6:1, reaction time for 6 min and power for 750 W offered the best yield of 98.1%.
目次 Table of Contents
目 錄

謝誌 ...I
中文摘要 Ⅱ
ABSTRACT III
目錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅹ

第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目標 1-1

第二章 文獻回顧 2-1
2.1能源概況… 2-1
2.2生質柴油特性 2-3
2.3生質柴油之原料 2-5
2.3.1植物油與動物油 2-5
2.3.2廢食用油 2-9
2.4生質柴油製造與方法 2-12
2.5微波加熱 2-18
2.6生產生質柴油之催化劑 2-21
2.6.1鹼性催化劑 2-21
2.6.2酸性催化劑 2-24
2.6.3離子液體 2-28

第三章 研究方法與步驟 3-1
3.1 研究架構與流程 3-1
3.2生質柴油製作 3-2
3.2.1實驗材料與藥品 3-2
3.2.2實驗設備 3-3
3.3皂化價及酸價測定 3-5
3.3.1皂化價測定之步驟 3-5
3.3.2酸價測定之步驟 3-6
3.4離子液體製備 3-8
3.5生質柴油製備與方法 3-8
3.5.1傳統加熱製備生質柴油 3-10
3.5.2微波加熱製備生質柴油 3-12
3.6產率的分析 3-15

第四章 結果與討論 4-1
4.1傳統加熱對生質柴油產率之影響 4-1
4.1.1反應時間對產率之影響 4-1
4.1.2醇油比對產率之影響 4-4
4.1.3溫度對產率之影響 4-7
4.1.4以鹼性催化劑對生質柴油產率之影響 4-9
4.2微波加熱對生質柴油產率之影響 4-14
4.2.1反應時間對產率之影響 4-14
4.2.2醇油比對產率之影響 4-16
4.2.3功率對產率之影響 4-20
4.2.4以鹼性催化劑對生質柴油產率之影響 4-21
4.3傳統加熱與微波加熱之比較 4-25
4.3.1反應時間和醇油比對產率之影響 4-25
4.3.2不同催化劑對產率之影響 4-28
4.4離子液體應用於生產生質柴油之催化劑 4-31
4.4.1不同類型離子液體對產率之影響 4-31
4.4.2反應時間不同對產率之影響 4-34
4.4.3功率對產率之影響 4-36
4.4.4醇油比不同對產率之影響 4-37
4.4.5離子液體濃度對產率之影響 4-39
第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-2

參考文獻 ..參-1
附錄A 附A-1

表目錄

表2.2-1 台灣能源供需展望 2-2
表2.3-1 以離子液體為催化劑生產生質柴油之研究 2-6
表2.3-2 全球生質柴油年產量排名前10國家 2-7
表2.3-3 植物油之優缺點 2-7
表2.3-4 植物油中各脂肪酸組成 2-8
表2.3-5 植物油與生質柴油之性質比較 2-9
表2.3-6 各文獻之轉酯化反應建議游離脂肪酸含量 2-11
表2.4-1 降低植物油黏滯度方法之優缺點 2-17
表2.5-1 微波加熱生產生質柴油之研究 2-20
表2.6-1 不同類型催化劑用於生質柴油生產之優缺點 2-26
表2.6-2 HPAs與黃角油反應之產率 2-27
表2.6-3 以離子液體為催化劑生產生質柴油之研究 2-31
表3.2-1 本研究所使用之藥品 3-2
表3.3-1 油品之特性 3-7
表3.4-1 離子液體結構式 3-9
表3.6-1 氣相層析儀(GC-FID)分析條件 3-15
表4.1-1 不同油品以傳統加熱生產生質柴油之相關文獻 4-3
表4.1-2 不同油品於傳統加熱以氫氧化鈉與甲醇鈉為催化劑生產生質柴油之相關文獻 4-12
表4.1-3 不同油品於傳統加熱以氫氧化鈉與甲醇鈉為催化劑生產生質柴油之相關文獻(續) 4-13
表4.2-1 不同油品於微波加熱以醇油比生產生質柴油之相關文獻 4-19
表4.3-1 傳統加熱與微波加熱以不同反應時間之產率比較 4-27
表4.4-1 大豆油以微波加熱生產生質柴油不同催化劑之產率比較 4-33
表4.4-2 棕櫚油以微波加熱生產生質柴油不同催化劑之產率比較 4-33
表4.4-3 廢食用油以微波加熱生產生質柴油不同催化劑之產率比較 4-34

圖目錄

圖2.2-1 烷基酯類之結構式 2-3
圖2.3-1 二階段轉酯化反應 2-11
圖2.4-1 轉酯化反應過程 2-15
圖2.4-2 三酸甘油酯進行熱裂解之反應途徑 2-16
圖2.6-1 鹼性催化轉酯化反應機制 2-23
圖2.6-2 酸性催化酯化反應過程 2-25
圖2.6-3 離子液體的水溶性與結構 2-30
圖3.1-1 研究架構流程圖 3-1
圖3.2-1 開放式微波實驗裝置 3-3
圖3.2-2 傳統加熱系統 3-4
圖3.2-3 微波加熱系統 3-4
圖3.3-1 油脂水解過程 3-7
圖3.5-1 傳統加熱製備生質柴油步驟 3-11
圖3.5-2 微波加熱製備生質柴油步驟 3-13
圖3.5-3 微波加熱反應前原料油 3-14
圖3.5-4 微波加熱反應後生質柴油 3-14
圖3.6-1 氣相層析儀升溫程式示意圖 3-16
圖4.1-1 各油品於傳統加熱以操作條件為不同反應時間之產率變化 4-4
圖4.1-2 各油品於傳統加熱以操作條件為不同醇油比之產率變化 4-6
圖4.1-3 各油品於傳統加熱以操作條件為不同溫度之產率變化 4-8
圖4.1-4 各油品於傳統加熱以操作條件為不同濃度氫氧化鈉催化劑之產率變化 4-10
圖4.1-5 各油品於傳統加熱以操作條件為不同濃度甲醇鈉催化劑之產率變化 4-11
圖4.2-1 各油品於微波加熱以操作條件為不同時間之產率變化 4-15
圖4.2-2 各油品於微波加熱以操作條件為不同醇油比之產率變化 4-18
圖4.2-3 各油品於微波加熱以操作條件為不同功率之產率變化 4-21
圖4.2-4 各油品於微波加熱以操作條件為不同濃度氫氧化鈉催化劑之產率變化 4-23
圖4.2-5 各油品於微波加熱以操作條件為不同濃度甲醇鈉催化劑之產率變化 4-24
圖4.3-1 傳統加熱與微波加熱以不同醇油比之產率比較 4-26
圖4.3-2 氫氧化鈉溶於甲醇中反應式 4-29
圖4.3-3 傳統加熱與微波加熱利用大豆油中以不同催化劑濃度之比較 4-29
圖4.3-4 傳統加熱與微波加熱利用棕櫚油中以不同催化劑濃度之比較 4-30
圖4.3-5 傳統加熱與微波加熱利用廢食用油中以不同催化劑濃度之比較 4-30
圖4.4-1 微波加熱利用大豆油、棕櫚油及廢食用油以不同類型離子液體之產率比較 4-32
圖4.4-2 反應時間不同對離子液體為催化劑對生質柴油之產率影響 4-35
圖4.4-3 微波功率不同對離子液體為催化劑對生質柴油之產率影響 4-36
圖4.4-4 醇油比不同對離子液體為催化劑對生質柴油之產率影響 4-38
圖4.4-5 離子液體濃度不同對生質柴油產率之影響 4-40
參考文獻 References
Abelson P.H., 1995. Renewable liquid fuels. Science 268, 268 – 955.
Adams, C., Peters, J.F., Rand, M.C., Schroer, B.J., Ziemke, M.C., 1983. Investigation of soybean oil as a diesel fuel extender: endurance tests. Journal of the American Oil Chemists' Society 60, 1574 − 1579.
Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., France, M.J., Navarro, A., 2000.
Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow.Biomass Bioenergy 18, 515 – 527.
Azcan, N., Danisman, A., 2007. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86, 2639 − 2644.
Azcan, N., Danisman, A., 2009. Microwave assisted transesterification of rapeseed oil. Fuels 87, 1781 − 1788.
Bala, B.K. 2005. Studies on biodiesels from transformation of vegetableoils for diesel engines. Energy Education Science Technology 15, 1 – 43.
Barnard, T.M., Leadbeater, N.E., Boucher, M.B., Stencel, L.M., Wilhite, B. A., 2007.Continuous-flow preparation of biodiesel using microwave heating. Energy & Fuel 21, 1777 − 1781.
Billaud, F., Dominguez, V., Broutin, P., Busson, C., 1995. Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil. Journal of the American Oil Chemists’ Society 72, 1149 − 1154.
Canakci, M., Gerpan, J.V., 1999. Biodiesel production via acid catalysis.Transactions of the American Society of Agricultural Engineers 42, 1203 – 1210.
Cetinkaya M., Karaosmanoglu F., 2004. Optimisation of base-catalysed transesterification reaction of used cooking oil. Energy Fuels 18. 1888 − 1895.
Chai, F., Cao, F.H., Zhai, F.Y., Chen, Y., Wang, X.H., Su, Z.M., 2007. Transesterification of Vegetable Oil to Biodiesel using a Heteropolyacid Solid Catalyst. Advances Synthesis & Catalysis 349, 1057 – 1065.
Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., Ishizaki, A., 2001.
Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry 37, 65 − 71.
Dasgupta, A., Banerjee, P., Malik, S., 1992. Use of microwave irradiation for rapid transesterification of lipids and accelerated synthesis of fatty acyl pyrrolidides for analysis by GC-MS: study of fatty acid profiles of olive oil, evening primrose oil, fish oils and phospholipids from mango pulp. Chemistry and Physics of Lipids 62, 281 –291.
Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44, 2093 − 2109.
Demirbas, A., 2006. Biodiesel production via non-catalytic SCF method and biodiesel
fuel characteristics. Energy Conservation and Management 47, 2271 – 2281.
Demirbas, A., 2007. Recent developments in biodiesel fuels. International Journal of Green Energy 4, 15–26.
Ding, J., Armstrong, D.W., 2005. Chiral ionic liquids: synthesis and applications.Chirality 17, 281 − 292.
Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M., 2004. Energy Optimization
of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel
production. Fuels 18. 77 − 83.
Earle M.J., Seddon, K.R., 2000. Ionic liquids. Green solvents for the future. Pure and
Applied Chemistry, 72 1391 – 1398
Encinar, J. M., Gonzalez, J. F., Rodriguez, J.J., Tejedor, A., 2002. Biodiesel fuels from
vegetable oils: Transesterification of Cynara cardunculus L. oils with ethanol.
Energy and Fuels 16, 443 – 450.
Encinar, J.N., Gonzalez, J.F., Rodriguez-Reinares A., 2005. Biodiesel from Used
Frying Oil. Variables Affecting the Yields and Characteristics of the Biodiesel.
Industrial & Engineering Chemistry Research 44, 5491–5499.
Felizardo P, Correia, M.J.N., Paposo, I., Mendes J. F., Berkemeier, R., Bordado, J.M.,
2006. Production of biodiesel from waste frying oils. Waste Manage 26, 487 −
494.
Freedman, B., Pryde, E.H., Mounts, T.L., 1984. Variables affecting the yield of fatty
esters from transesterified vegetable oils. Journal of American Oil Chemists
Society 61, 1638 – 1643.
Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by
transesterification of oils. Journal of Bioscience and Bioengineering 92, 405 −
416.
Groisman, Y. and Gedanken, A., 2008. Continuous flow, circulating microwave
system and its application in nanoparticle fabrication and biodiesel synthesis.
The Journal of Physical Chemistry C 112, 8802 − 8808.
Ha, S.H., Lan, M.N., Lee, S.H., Hwang, S.M., Koo, Y.M., 2007. Lipase-catalyzed
biodiesel production from soybean oil in ionic liquids. Enzyme and Microbial
Technology 41, 480 − 483.
Haas, M.J., Michalski, P.J., Runyon, S., Nunez, A., Scott, K.M. 2003. Production of
FAME from acid oil, a by,product of vegetable oil refining. Journal of the
American Oil Chemists Society 80, 97 − 102.
Hagiwara, R., Ito, Y., 2000. Room temperature ionic liquids of alkylimidazolium
cations and fluoroanions. Journal of Fluorine Chemistry 105, 221 − 227.
Han, M., Yi, W., Wu, Q., Liu, Y., Hong, Y., Wang, D., 2009. Preparation of biodiesel
from waste oils catalyzed by a Bronsted acidic ionic liquid. Bioresource
Technology 100, 2308 – 2310.
Hass, M.J., Michalski, P.J., Runyon, S., Numez, A., Scott, K.M., 2001. Engine
performance of biodiesel fuel prepared from soybean soapstock:A high quality
renewalbe fuel produce from a waste feedstock, Energy & Fuels 15, 1207 −
1212.
Hernando, J., Leton, P., Matia, M.P., Novella, J.L., Alvarez-Builla, J., 2007. Biodiesel
and FAME synthesis assisted by microwaves: homogeneous batch and flow
processes. Fuel 86, 1641 − 1644.
Jeyashoke, N., Krisnangkura, K., Chen, S.T. 1998. Microwave induced rapid
transmethylation of fatty acids for analysis of food oil. Journal of
Chromatography A 818, 133 – 137.
Johnston, M., Holloway, T., 2008. A global comparison of national biodiesel
production potentials. Environmental Science and Technology 41, 7967 – 7973.
Khan A.K. 2002. Research into biodiesel kinetics & catalyst development, University
of Queensland, Brisbane, Queensland.
Leadbeater, N.E., Stencel, L.M., 2006. Easy preparation of biodiesel using microwave
heating. Energy & Fuel 20, 2281 − 2283.
Lertsathapornsuk, V., Pairintra, R., Aryusuk, K., Krisnangkura, K., 2008. Microwave
assisted in continuous biodiesel production from waste frying palm oil and its
performance in a 100 Kw diesel generator. Fuel Processing Technology 89, 1330
− 1336.
Lertsathapornsuk, V., Pairintra, R., Krisnangkura, K., Chindaruksa, S., 2003.
Proceeding of the 1st International Conference on Sustainable Energy and Green
Architecture, Bangkok, SE091.
Leung, D.Y.C., Guo, Y., 2006 Transesterification of neat and used frying oil:
optimization for biodiesel production. Fuel Processing Technology 87, 883 –
890.
Leveque1, J.M., Estager, J., Draye, M., Cravotto, G., Boffa, L., Bonrath, W., 2007.
Synthesis of ionic liquids using non conventional activation methods: an
overview. Monatshefte fur Chemie 138, 1103 − 1113.
Liang, X., Gong, G., Wu, H., Yang, J., 2009. Highly efficient procedure for the
synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as
catalyst. Fuel 88, 613 − 616.
Ma, F., Clements, L.D., Hanna, M.A., 1998. The effects of catalyst, free fatty acids
and water on transesterification of beef tallow. Transactions of the American
Society of Agricultural Engineers 41, 1261 – 1264.
Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresource Technology 70, 1 − 15.
Majewski, M.W., Pollack, S.A., Veronica, A., 2009. Diphenylammonium salt
catalysts for microwave assisted triglyceride transesterification of corn and
soybean oil for biodiesel production. Tetrahedron Letters 50, 5175 − 5177.
Marsh, K.N., Boxall, J.A., Lichtenthaler, R., 2004. Room temperature ionic liquids
and their mixtures—a review. Fluid Phase Equilibria 219, 93 − 98.
Meher, L.C., Sagar, D.V., Naik, S.N., 2006. Technical aspects of biodiesel production
by transesterification—a review. Renewable and Sustainable Energy Reviews, 10,
248 − 268.
Meher, L.C., Vidya, S.S., Dharmagadda, S.N.N., 2006. Optimization of
alkali-catalyzed transesteriWcation of Pongamia pinnata oil for production of
biodiesel. Bioresource Technology 97, 1392 – 1397.
Neto, B.A.D., Alves, M.B., Lapis, A.A.M., Nachtigall, F.M., Eberlin, M.N., Dupont,
J., Suarez, P.A.Z., 2007. 1-n-Butyl -3-methylimidazolium tetrachloro-indate
(BMI·InCl4) as a media for the synthesis of biodiesel from vegetable oils.
Journal of Catalysis 249, 154 − 161.
Patil, P., Deng, S., Rhodes, I., Lammers, P.J., 2010. Conversion of waste cooking oil
to biodiesel using ferric sulfate and supercritical methanol processes. Fuel 89,
360 − 364.
Perin, G., Alvaro, G., Westphal, E., Viana, L.H., Jacob, R.G., Lenardao, E.J., D’Oca,
M.G.M., 2008. Transesterification of castor oil assisted by microwave irradiation.
Fuel, 87, 2838 − 2841.
Phan A., Phan T., 2008. Biodiesel production from waste cooking oils. Fuel 87. 3490
− 3496.
Ramadhas, A.S., Jayaraj, S., Muraleedharan, C., 2005. Biodiesel production from
high FFA rubber seed oil. Fuel 84, 335 – 340.
Rashid, U., Anwar, F., Knothe, G., 2009. Evaluation of biodiesel obtained from
cottonseed oil. Fuel Processing Technology 90, 1157 – 1163.
Refaat, A.A., El Sheltawy, S.T., 2008. Time Factor in Microwave-enhanced Biodiesel
Production. WSEAS Transactions on Environment and Development 4, 279 − 288.
Refaat, A.A., Sheltawy, E1, S.T., Sadek, K.U., 2008. Optimum reaction time,
performance and exhaust emissions of biodiesel produced by microwave
irradiation. International journal of Environmental Science and Technology 5,
315 − 322.
Sahoo, P.K., Das, L.M., Babu, M.K.G., Naik, S.N., 2007. Biodiesel development
from high acid value polanga seed oil and performance evaluation in a CI engine.
Fuel 86, 448 – 454.
Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Evaluation of biodiesel obtained
from cottonseed oil. Fuel 66, 1372 – 1378.
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H., 1988. Diesel fuel
from thermal decomposition of soybean oil. Journal of the American Oil
Chemists’ Society 65, 1781 − 1786.
Seddon, K.R., 1997. Ionic liquids for clean technology. Journal of Chemical
Technology & Biotechnology 68, 351 − 356.
Sharma, Y.C., Singh, B., 2008. Development of biodiesel from karanja, a tree found
in rural India. Fuel 87, 1740 − 1742.
Sharma, Y.C., Singh, B., 2009. Development of biodiesel: Current scenario.
Renewable and Sustainable Energy Reviews 19, 1646 – 1651.
Sharma, Y.C., Singh, B., Upadhyay S N., 2008. Advancements in development and
characterization of biodiesel: a review. Fuel 87, 2355 – 2373.
Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T.,
Yonemoto, T., 2007. Biodiesel production using anionic ion-exchange resin as
heterogeneous catalyst. Bioresource Technology 98, 416 – 421.
Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G., 2007. Synthesis of biodiesel from
soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catalysis
Communications 8, 2159 − 2165.
Subramanian, R., Nandini, K.E., Sheila, P.M., Gopalakrishna A.G., Raghavarao,
K.S.M.S., Nakajima, M., Kimura, T., Maekawa, T., 2000. Membrane processing
of used frying oils. Journal of American Oil Chemist’s Society 77, 323 – 328.
Sunith, S., Kanjilal, S., Reddy, P.S., Prasad, R.B.N., 2007. Ionic liquids as a reaction
medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnology
Letters 29, 881 − 885.
Supplea, B., Howard-Hildigeb, R., Gonzalez-Gomezb, E., Leahya, J.J., 2002 The
Effect of Steam Treating Waste Cooking Oil on the Yield of Methyl Ester.
Journal of American Oil Chemist’s Society 79, 175 − 178.
Tiwari A.K., Kumar, A., Raheman, H., 2007. Biodiesel production from jatropha
oil(Jatropha curcas) with high free fatty acids: an optimized process. Biomass
and Bioenergy 31, 569 – 575.
Tomasevic, A.V., Siler-Marinkovic, S.S., 2003. Methanolysis of used frying oil. Fuel
Process Technol 81, 1 − 6.
University of Idaho (Department of Biological and Agricultural Engineering), Acute
Toxicity of Biodiesel to Freshwater and Marine Organisms.Development of
Rapeseed Biodiesel for Use in High-speed Diesel Engine. Progress report, 117 – 131.
Usta, N., 2005. Use of tobacco seed oil methyl ester in a turbocharged indirect
injection diesel engine. Biomass Bioenergy 28, 77 − 86.
Utlu Z., Kocak M.S., 2008. The effect of biodiesel fuel obtained from waste cooking
oil on direct injection diesel engine performance and exhaust emissions. Renew
Energy 33, 1936 − 1941.
Vicente, G., Martınez, M., Aracil J., 2004. Integrated biodiesel production: a
comparison of different homogeneous catalysts systems Bioresource Technology
92, 297 – 305.
Wang, Y., Ou, S., Liu, P., Zhang, Z., 2007. Preparation of biodiesel from waste
cooking oil via two-step catalyzed process. Energy Convers Manage 248, 184 − 188.
Wang,Y., Ou, S., Liu, P., Xue, F., Tang, S., 2006. Comparison of two different
processes to synthesize biodiesel by waste cooking oil. Journal of American Oil
Chemist’s Society 252, 107 – 112.
Welton, T., 1999. Room-temperature ionic liquids, solvents for synthesis and catalysis.
chemical reviews 99, 2071 − 2083.
Wilkes, J.S., 2002. A short history of ionic liquids – from molten salts to neoteric
solvents. Green Chemistry 4, 73 − 80.
Yang, Z., Zhang, K.P., Huang, Y., Wang, Z., 2010. Both hydrolytic and transesterification activities of Penicillium expansum lipaseare significantly
enhanced in ionic liquid [BMIm][PF6]. Journal of Molecular Catalysis B:Enzymatic 63, 23 − 30.
Yuan, H., Yang, B.L., Zhu, G.L., 2009. Synthesis of Biodiesel Using Microwave
Absorption Catalysts. Energy & Fuels 23, 548 − 552.
Zhang, L., Xian, M., He Y., Li, L., Yang, J. Yu, S. Xu, X. 2009. A Brønsted acidic
ionic liquid as an efficient and environmentally benign catalyst for biodiesel
synthesis from free fatty acids and alcohols. Bioresource Technology 100, 4368 – 4373.
Zhang, S., Zu, Y.G., Fu, Y.J., Luo M., Zhang, D.Y., 2010. Rapid microwave-assisted
transesterification of yellow horn oil to biodieselusing a heteropolyacid solid catalyst. Thomas Efferth cBioresource Technology 101, 931 – 936.
Zhang, Y., Dube, M.A., McLean, D.D., Kates, M., 2003. Biodiesel production from
waste cooking oil. 1. Process design and technological assessment. Bioresource
Technology 89, 1 – 16.
Zhang, Y., Dube, M.A., McLean, D.D., Kates, M., 2003. Biodiesel production from waste cooking oil: 2 Economic assessment and sensitivity analysis. Bioresource Technologyl 90, 229 – 240.
Zullaikah, S., Lai, C.C., Vali, S.R., Ju Y.H., 2005. A Two-step Acid-catalyzed Process for the Production of Biodiesel from Rice Bran Oil, Bioresource Technol 97, 1889 – 1896.
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用及環保。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.47.221
論文開放下載的時間是 校外不公開

Your IP address is 3.141.47.221
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code