Responsive image
博碩士論文 etd-0623111-141646 詳細資訊
Title page for etd-0623111-141646
論文名稱
Title
溶解性有機物與多環芳香族化合物結合行為之研究
The Study of Binding Behaviors between Dissolved Organic Matter and Polycyclic Aromatic Compounds
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-05-18
繳交日期
Date of Submission
2011-06-23
關鍵字
Keywords
多環芳香烴化合物、含氮多環芳香族化合物、溶解性有機物、結合、螢光衰減法、微波照射、錯合混凝作用、微固相萃取
complexation-flocculation, headspace solid-phase microextraction, polycyclic aromatic hydrocarbons, microwave irradiation, nitrogen-containing polycyclic aromatic compounds, fluorescence quenching, binding constant, dissolved organic matters
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
多環芳香烴化合物(PAHs)及含氮多環芳香族化合物(N-PACs)為環境中廣泛存在的高毒性污染物,因此此類化合物的宿命研究廣受重視。過去在文獻中,發現溶解性有機物為一控制此類污染物宿命及傳輸行為的重要因子;然而,針對其間的結合機制,至今仍不甚清楚。本研究利用螢光衰減法來量測腐植質與benzo[h]quinoline (為一含氮多環芳香族化合物)間之結合係數(KDOC)受pH值變化時的影響,由於benzo[h]quinoline隨pH降低會發生質子化作用(protonation),同時它的螢光特性也會隨之改變,因此,若僅利用單一組激發光及散射光波長來量測,即對它的結合係數產生錯估,所以,本研究中利用兩組最佳激發光及散射光波長分別量測中性的benzo[h]quinoline及質子化的benzo[h]quinolinium之對應螢光值,並開發簡易混合模式(simple mixing model)去除次要物種的螢光貢獻,來估算benzo[h]quinoline之結合係數隨pH值變化的趨勢。研究結果顯示,腐植質與benzo[h]quinoline間的結合機制在高及低pH下(pH<3, pH>6)主要受疏水性作用(hydrophobic interaction)控制,而中pH下主要受陽離子交換控制。此外,利用主成分分析(PCA)及回歸分析來評估腐植質結構特性及元素組成對腐植質與benzo[h]quinoline及benzo[h]quinolinium間的結合係數影響,其中發現此類化合物的結合係數主要受腐植質的疏水特性及芳香族含量所控制,擁有較疏水的腐植酸與此類化合物具有較高的親和力,且最高結合係數發生在pH接近4。另一方面,了解污染物在水環境分布的濃度對瞭解其宿命亦是一相當重要的課題,本研究藉由微波輔助頂空微固相萃取(microwave-assisted headspace solid phase microextraction)結合氣相質譜儀(GC-MS)分析水中PAHs分布,研究中尋找最佳化參數條件,如熱脫附溫度及時間、微波功率及照射時間、冷卻循環水溫等。在最佳化參數條件下,本方法提供較低的偵測極限及高線性檢量線;此外,本方法,PAHs萃取效率亦不受水中溶解性有機物存在而有所影響,故此方法適用分析水環境中PAHs的濃度。在之前所開發簡易混和模式僅能提供解決自變性單一化合物的自身螢光干擾,利用螢光衰減法量測多種螢光化合物共存時的結合係數,仍有諸多限制;本研究利用錯合混凝作用(complexation- flocculation process)結合微波輔助頂空微固相萃取及氣相質譜儀分析數個PAHs與腐植質間的結合係數,結果均與文獻結果將近,且腐植質與PAHs間的結合作用亦不受錯合混凝作用的影響,此方法提供諸多優點,如不受螢光物種的限制、可同時量測多種化合物及快速的分析。
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic compound (N-PAC) are widespread toxic pollutants in environments. The fate of PAHs and N-PACs are of great concern because some of these compounds were identified as caricinogenic, mutagenic and teratogenic compounds. As described in literature, dissolved organic matter (DOM) is an important factor in control of their fate; however, the binding behaviors between these compounds and DOM are still not fully understood. The binding constants (KDOC) between humic substances and one selected N-PAC, benzo[h]quinoline, were measured at varying pH levels using fluorescence quenching (FQ) method. As fluorescence characteristics of benzo[h]quinoline change with pH, determination required two optimum sets of excitation and emission wavelength pairs. A simple mixing model was proposed and used to eliminate the inherent fluorescence interference between benzo[h]quinoline (BQ) and its protonated form, benzo[h]quinolinium (BQH+), and to deduce Kmix which represents the overall binding as the sum of that for the individual analogs. The characteristics of humic substances, especially their hydrophobicity and aromaticity, established by principal components analysis of structural and elemental compositions, were the main determinants of their binding affinity with both benzo[h]quinoline and benzo[h]quinolinium (KBQ and KBQH+) across a range of pH values. Hydrophobic interaction is likely to control the binding between humic substance and benzo[h]quinoline and benzo[h]quinolinium, in lower and higher pH ranges (pH<3, pH>6). In contrast, cation exchange seems to control on the binding affinity of benzo[h]quinolinium in the middle range of pH.
Determination of PAH concentration is quite essential for investigating the fate of PAHs in environments. Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was applied as a single step prior to determination of PAH concentrations in water using GC-MS. To optimize the extraction efficiency of PAHs by MA-HS-SPME, the influence of various parameters, including temperature, duration of thermal desorption, microwave irradiation power and duration, and the temperature of the circulating cooling water system, was studied. The proposed method was demonstrated applicable to environmental water samples. In addition, DOM matrix effect did not influence the determination and extraction efficiency of PAHs.
Although the proposed simple mixing model can eliminate the fluorescent interference of hydrophobic organic compounds with acid-base pair forms, it is still limited in using for correcting the KDOC measurement of more than two fluorescent compounds simultaneously. A new alternative protocol, complexation-flocculation combined with MA-HS-SPME/GC-MS method, was proposed to determine the binding constants of seleted PAHs to humic substances. The results obtained are comparable with KDOC data reported in literatures. CF-MA-HS-SPME/GC-MS provides some advantages over other methods, such as applicable not limited to fluorescent compounds, faster in determination and capable in measuring varieties of compounds simultaneously.
目次 Table of Contents
謝 誌 I
Abstract II
中文摘要 IV
Table of Content VI
List of Figures X
List of Tables XIV
List of Appendix XV
Symbol Table XVII

Chapter 1 Introduction 1
1.1 Natural organic matter 1
1.2 Hydrophobic Organic Pollutants 8
1.3 Polycyclic Aromatic Hydrocarbons 12
1.4 Objectives 14
Chapter 2 pH dependence of binding benzo[h]quinoline and humic acid and effects on fluorescence quenching 17
2.1 Background 17
2.2 Material and Methods 19
2.2.1 Chemicals and reagents 19
2.2.2 Fluorescence quenching experiments 20
2.3 Results and Discussion 22
2.3.1 Fluorescence spectra of benzo[h]quinoline 22
2.3.2 Effect of pH on the KDOC of benzo[h]quinoline 24
2.3.3 Comparison with other studies 26
2.3.4 Simple mixing model 29
2.3.5 Interpretation of the model results 35
2.4 Summary 38
Chapter 3 The role of the characteristics of humic substance in binding with benzo[h]quinoline 39
3.1 Background 39
3.2 Material and Methods 40
3.2.1 Chemicals and reagents 40
3.2.2 Fluorescence quenching experiments 41
3.3 Results and Discussion 41
3.3.1 Kmix-pH trend of benzo[h]quinoline and benzo[h]quinolinium 41
3.3.2 Principal characteristics of humic substances 45
3.3.3 Binding affinity of benzo[h]quinoline and characteristics of humic substances 52
3.3.4 Binding affinity of benzo[h]quinolinium and characteristics of humic substances 54
3.3.5 Overall binding affinity (Kmix) and characteristics of humic substances 57
3.4 Summary 59
Chapter 4 Determination of Polycyclic Aromatic Hydrocarbons in Water by Microwave-assisted Headspace Solid-Phase Microextraction Combined with Gas Chromatography–Mass Spectrometry 61
4.1 Background 61
4.2 Materials and Method 63
4.2.1Chemicals and reagents 63
4.2.2 The MA-HS-SPME system 64
4.2.3 GC-MS condition 66
4.3 Results and Discussion 67
4.3.1 Selection of a SPME fiber 67
4.3.2 Selection of desorption conditions 68
4.3.3 Selection of microwave irradiation conditions 71
4.3.4 Selection of the water circulation temperature 73
4.3.5 Validation of the MA-HS-SPME method 75
4.3.6 Effect of DOM on the MA-HS-SPME method 77
4.3.7 Application to an environmental water sample 78
4.4 Summary 79
Chapter 5 Determination of binding constants of polycylic aromatic hydrocarbons to humic substances by complexation-flocculation combined with microwave-assisted headspace solid phase microextration and GC/MS 81
5.1 Background 81
5.2 Materials and Method 83
5.2.1 Reagents and Chemicals 83
5.2.2 Binding Experiment 83
5.2.3 Selection of Complexation-flocculation combined with centrifugal condition 84
5.2.4 The MA-HS-SPME system and GC-MS condition 85
5.2.3 KDOC of PAHs determination 86
5.3 Results and Discussion 87
5.3.1 Removal of humic substance by complexation-flocculation technique 87
5.3.2 Determination of KDOC Values using the CF-MA-HS-SPME method 89
5.4 Summary 92
Chapter 6 Conclusions and Suggestions 93
6.1 Conclusions 93
6.2 Suggestions for future works 95
References 97
Appendix 118
Author’s curriculum vitae 138


參考文獻 References
Accardi-Dey, A., Gschwend, P.M., 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ. Sci. Technol. 36, 21-29.
Aguinaga, N., Campillo, N., Vinas, P., Hernandez-Cordoba, M., 2008. Evaluation of solid-phase microextraction conditions for the determination of polycyclic aromatic hydrocarbons in aquatic species using gas chromatography. Anal. Bioanal. Chem. 391, 1419-1424.
Akkanen, J., Kukkonen, J.V.K., 2001. Effects of water hardness and dissolved organic material on bioavailability of selected organic chemicals. Environ. Toxicol. Chem. 20, 2303-2308.
Akkanen, J., Lyytikainen, M., Tuikka, A., Kukkonen, J.V.K., 2005. Dissolved organic matter in pore water of freshwater sediments: Effects of separation procedure on quantity, quality and functionality. Chemosphere 60, 1608-1615.
Akkanen, J., Vogt, R.D., Kukkonen, J.V.K., 2004. Essential characteristics of natural dissolved organic matter affecting the sorption of hydrophobic organic contaminants. Aquat. Sci. 66, 171-177.
Arthur, C.L., Pawliszyn, J., 1990. Solid-phase microwxtraxtion with thermal-desorption using fused-silica optical fibers. Anal. Chem. 62, 2145-2148.
Boehm, P.D., Page, D.S., Gilfillan, E.S., Bence, A.E., Burns, W.A., Mankiewicz, P.J., 1998. Study of the fates and effects of the Exxon Valdez oil spill on benthic sediments in two bays in Prince William Sound, Alaska. 1. Study design, chemistry, and source fingerprinting. Environ. Sci. Technol. 32, 567-576.
Brunk, B.K., Jirka, G.H., Lion, L.W., 1997. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environ. Sci. Technol. 31, 119-125.
Budzinski, H., Letellier, M., Thompson, S., LeMenach, K., Garrigues, P., 2000. Combined protocol for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments using focussed microwave assisted (FMW) extraction at atmospheric pressure. Fresenius Journal of Analytical Chemistry 367, 165-171.
Buffle, J., Leppard, G.G., 1995. Characterization of aquatic colloids anfd macromelecules. 1. structure and behavior of colloidal material. Environ. Sci. Technol. 29, 2169-2175.
Burns, W.A., Mankiewicz, P.J., Bence, A.E., Page, D.S., Parker, K.R., 1997. A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environ. Toxicol. Chem. 16, 1119-1131.
Carter, C.W., Suffet, I.H., 1982. Binding of DDT to dissolved humic materials. Environ. Sci. Technol. 16, 735-740.
Chefetz, B., Illani, T., Schulz, E., Chorover, J., 2006. Wastewater dissolved organic matter: characteristics and sorptive capabilities. Water Sci. Technol. 53, 51-57.
Chen, H.Y., Preston, M.R., 2004. Measurement of semi-volatile azaarenes in airborne particulate and vapor phases. Anal. Chim. Acta 501, 71-78.
Chen, Y.I., Su, Y.S., Jen, J.F., 2002. Determination of dichlorvos by on-line microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-electron-capture detection. J. Chromatogr. A 976, 349-355.
Chin, Y.P., Aiken, G.R., Danielsen, K.M., 1997. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. 31, 1630-1635.
Chin, Y.P., Gschwend, P.M., 1992. Partitioning of Polycyclic Aromatic-Hydrocarbons to Marine Porewater Organic Colloids. Environ. Sci. Technol. 26, 1621-1626.
Chiou, C.T., Malcolm, R.L., Brinton, T.I., Kile, D.E., 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20, 502-508.
Chiou, C.T., McGroddy, S.E., Kile, D.E., 1998. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 32, 264-269.
Chiou, C.T., Peters, L.J., Freed, V.H., 1979. Physical concept of soil-water equilibria for non-ionic organic-compounds. Science 206, 831-832.
Cho, H.H., Park, J.W., Liu, C.C.K., 2002. Effect of molecular structures on the solubility enhancement of hydrophobic organic compounds by environmental amphiphiles. Environ. Toxicol. Chem. 21, 999-1003.
Danielsen, K.M., Chin, Y.P., Buterbaugh, J.S., Gustafson, T.L., Traina, S.J., 1995. Solubility enhancement and fluorescence quenching of pyrene by humic substances: The effect of dissolved oxygen on quenching processes. Environ. Sci. Technol. 29, 2162–2165.
De Paolis, F., Kukkonen, J., 1997. Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34, 1693-1704.
Doll, T.E., Frimmel, F.H., Kumke, M.U., Ohlenbusch, G., 1999. Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC) - comparison of fluorescence quenching and solid phase micro extraction (SPME). Fresenius Journal of Analytical Chemistry 364, 313-319.
Doong, R., Chang, S., Sun, Y., 2000. Solid-phase microextraction for detemnining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples. J. Chromatogr. A 879, 177-188.
Engebretson, R.R., Von wandruszka, R., 1994. Microorganization in dissolved humic acids. Environ. Sci. Technol. 28, 1934-1941.
Fang, M.-D., Hsieh, P.-C., Ko, F.-C., Baker, J.E., Lee, C.-L., 2007. Sources and distribution of polycyclic aromatic hydrocarbons in the sediments of Kaoping river and submarine canyon system, Taiwan. Mar. Pollut. Bull. 54, 1179-1189.
Feldmannova, M., Hilscherova, K., Marsalek, B., Blaha, L., 2006. Effects of N-heterocyclic polyaromatic hydrocarbons on survival, reproduction, and biochemical parameters in Daphnia magna. Environ. Toxicol. 21, 425-431.
Fernandez-Gonzalez, V., Concha-Grana, E., Muniategui-Lorenzo, S., Lopez-Mahia, P., Prada-Rodriguez, D., 2007. Solid-phase microextraction-gas chromatographic-tandem mass spectrometric analysis of polycyclic aromatic hydrocarbons towards the European Union water directive 2006/0129 EC. J. Chromatogr. A 1176, 48-56.
Gauthier, T.D., Seitz, W.R., Grant, C.L., 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol. 21, 243-248.
Gauthier, T.D., Shane, E.C., Guerin, W.F., Seitz, W.R., Grant, C.L., 1986. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 20, 1162-1166.
Ghosh, K., Schnitzer, M., 1980. Macromolecular structures of humic substances. Soil Science 129, 266-276.
Grathwohl, P., 1990. Influence of organic-matter from soild and sediments from various origins on the sorption of chlorinated aliphatic-hydrocarbons-implications of Koc correlations. Environ. Sci. Technol. 24, 1687-1693.
Gschwend, P.M., Wu, S.C., 1985. On the Constancy of Sediment Water Partition-Coefficients of Hydrophobic Organic Pollutants. Environ. Sci. Technol. 19, 90-96.
Gustafsson, O., Gschwend, P.M., 1997. Aquatic colloids: Concepts, definitions, and current challenges. Limnol. Oceanogr. 42, 519-528.
Gustafsson, O., Haghseta, F., Chan, C., MacFarlane, J., Gschwend, P.M., 1997. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ. Sci. Technol. 31, 203-209.
Gustafsson, &Ouml;., Nilsson, N., Bucheli, T.D., 2001. Dynamic colloid–water partitioning of pyrene through a coastal Baltic spring bloom. Environ. Sci. Technol. 35, 4001–4006.
Havenga, W.J., Rohwer, E.R., 2000. The use of SPME and GC-MS for the chemical characterisation and assessment of PAH pollution in aqueous environmental samples. Int. J. Environ. Anal. Chem. 78, 205-221.
Hawthorne, S.B., Grabanski, C.B., Miller, D.J., Kreitinger, J.P., 2005. Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K-DOC values. Environ. Sci. Technol. 39, 2795-2803.
Herbert, B.E., Bertsch, P.M., Novak, J.M., 1993. Pyrene sorption by water-soluble organic-carbon. Environ. Sci. Technol. 27, 398-403.
Herbert, P., Silva, A.L., Joao, M.J., Santos, L., Alves, A., 2006. Determination of semi-volatile priority pollutants in landfill leachates and sediments using microwave-assisted headspace solid-phase microextraction. Anal. Bioanal. Chem. 386, 324-331.
Heringa, M.B., Hermens, J.L.M., 2003. Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trac-Trends Anal. Chem. 22, 575-587.
Howerton, S.B., Goodpaster, J.V., McGuffin, V.L., 2002. Characterization of polycyclic aromatic hydrocarbons in environmental samples by selective fluorescence quenching. Anal. Chim. Acta 459, 61-73.
Hsieh, P.-C., Hsu, S.-H., Lee, C.-L., Brimblecombe, P., 2010. pH Dependence of binding benzo[h]quinoline and humic acid and effects on fluorescence quenching. Environ. Toxicol. Chem. 29, 1696-1702.
Hsieh, P.C., Lin, J.H., Lee, C.L., 2009. Mixing of dissolved organic matter from distinct sources: Using fluorescent pyrene as a probe. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 44, 170-178.
Hsu, S.H., 2006. The study of pH and ionic strangth effect on the binding constant on nitrogen contained polycyclic aromatic hydrocarbons and colloid organic matter, National Sun Yat-sen University, Master Thesis
Jonker, M.T.O., Koelmans, A.A., 2002. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations. Environ. Sci. Technol. 36, 3725-3734.
Karickhoff, S.W., Brown, D.S., Scott, T.A., 1979. Sorption of hydrophobic pollutants on natural sediments. Water Research 13, 241-248.
Karthikeyan, K.G., Chorover, J., 2002. Humic acid complexation of basic and neutral polycyclic aromatic compounds. Chemosphere 48, 955-964.
Kile, D.E., Chiou, C.T., Zhou, H.D., Li, H., Xu, O.Y., 1995. Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environ. Sci. Technol. 29, 1401-1406.
Kile, D.E., Wershaw, R.L., Chiou, C.T., 1999. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds. Environ. Sci. Technol. 33, 2053-2056.
Kim, Y., Lee, D., 2002. Solubility enhancement of PCDD/F in the presence of dissolved humic matter. J. Hazard. Mater. 91, 113-127.
King, A.J., Readman, J.W., Zhou, J.L., 2003. The application of solid-phase micro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons (PAHs). Environ. Geochem. Health 25, 69-75.
King, A.J., Readman, J.W., Zhou, J.L., 2004. Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 523, 259-267.
King, A.J., Readman, J.W., Zhou, J.L., 2007. Behaviour of polycyclic aromatic hydrocarbons in dissolved, colloidal, and particulate phases in sedimentary cores. Int. J. Environ. Anal. Chem. 87, 211-225.
Kollist-Siigur, K., Nielsen, T., Gron, C., Hansen, P.E., Helweg, C., Jonassen, K.E.N., Jorgensen, O., Kirso, U., 2001. Sorption of polycyclic aromatic compounds to humic and fulvic acid HPLC column materials. J. Environ. Qual. 30, 526-537.
Kopinke, F.D., Georgi, A., Mackenzie, K., 2001. Sorption and chemical reactions of PAHs with dissolved humic substances and related model polymers. Acta Hydrochim. Hydrobiol. 28, 385-399.
Kulikova, N.A., Perminova, I.V., 2002. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ. Sci. Technol. 36, 3720-3724.
Kuo, L.-J., Lee, C.-L., 2005. Stage change in binding of pyrene to selected humic substances under different ionic strengths. Environ. Toxicol. Chem. 24, 58–66.
Kwach, B.O., Lalah, J.O., 2009. High Concentrations of Polycyclic Aromatic Hydrocarbons Found in Water and Sediments of Car Wash and Kisat Areas of Winam Gulf, Lake Victoria-Kenya. Bull. Environ. Contam. Toxicol. 83, 727-733.
Lakowicz, J.R., 1983. Principles of fluorescence spectroscopy. Plenum Press, New York, NY, USA.
Landrum, P.F., Nihart, S.R., Eadie, B.J., Gardner, W.S., 1984. Reverse-phase separation method for determining pollutant binding to aldrich humic-acid and dissolved organic carbon of natural waters. Environ. Sci. Technol. 18, 187-192.
Laor, Y., Farmer, W.J., Aochi, Y., Strom, P.F., 1998. Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Res. 32, 1923-1931.
Laor, Y., Rebhun, M., 1997. Complexation-flocculation: A new method to determine binding coefficients of organic contaminants to dissolved humic substances. Environ. Sci. Technol. 31, 3558-3564.
Lassen, P., Poulsen, M.E., StuerLauridsen, F., Carlsen, L., 1997. Leaching of selected PAH's and hetero-analogues from an organic matrix into synthetic ground water. Influence of dissolved humic material. Chemosphere 34, 335-344.
Later, D.W., 1985. Nitrogen-Containing Polycyclic Aromatic Compounds in Coal Derived Materials. In Handbook of Polycyclic Aromatic Hydrocarbons. In Bjorseth Aand Ramdahl T, eds, Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, New York, NY, USA, pp 265-350.
Lee, C.-L., Huang, H.-T., Kuo, L.-J., 2000. Experimental validation of an OMS model for the sorption behaviors of PAHs onto aluminum oxide coated with humic acids. Journal of Environmental Science and Health Part A 35, 515-536.
Lee, C.-L., Kuo, L.-J., 1999. Quantification of the dissolved organic matter effect on the sorption of hydrophobic organic pollutant: application of an overall mechanistic sorption model. Chemosphere 38, 807–821.
Lee, C.L., Kuo, L.J., Wang, H.L., Hsieh, P.C., 2003. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model. Water Res. 37, 4250-4258.
Li, H.P., Li, G.C., Jen, J.F., 2003. Determination of organochlorine pesticides in water using microwave assisted headspace solid-phase microextraction and gas chromatography. J. Chromatogr. A 1012, 129-137.
Llompart, M., Li, K., Fingas, M., 1998. Solid phase microextraction and headspace solid phase microextraction for the determination of polychlorinated biphenyls in water samples. Anal. Chem. 70, 2510-2515.
Luque-Garcia, J.L., de Castro, M.D.L., 2003. Extraction of polychlorinated biphenyls from soils by automated focused microwave-assisted Soxhlet extraction. J. Chromatogr. A 998, 21-29.
Mackay, D., Bobra, A., Shiu, W.Y., Yalkowsky, S.H., 1980. Relationships between aquous solubility annd octanal-water partition coefficients. Chemosphere 9, 701-711.
Magee, B.R., Lion, L.W., Lemley, A.T., 1991. Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in popous-media. Environ. Sci. Technol. 25, 323-331.
Maurice, P.A., Namjesnik-Dejanovic, K., 1999. Aggregate structures of sorbed humic substances observed in aqueous solution. Environ. Sci. Technol. 33, 1538-1541.
McCarthy, J.F., Jimenez, B.D., 1985a. Effect of humic substances on the bioaccumlation of organic contaminats by aquatic organisms. Org. Geochem. 8, 141-141.
McCarthy, J.F., Jimenez, B.D., 1985b. Interactions between polycylclic aromatic hydrocarbons and dissolved humic material-binding and dissociation. Environ. Sci. Technol. 19, 1072-1076.
McGroddy, S.E., Farrington, J.W., Gschwend, P.M., 1996. Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ. Sci. Technol. 30, 172-177.
Means, J.C., Wood, S.G., Hassett, J.J., Banwart, W.L., 1980. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol 14, 1524-1528.
Myneni, S.C.B., Brown, J.T., Martinez, G.A., Meyer-Ilse, W., 1999. Imaging of humic substance macromolecular structures in water and soils. Science 286, 1335-1337.
Nas, K., Axelman, J., Naf, C., Broman, D., 1998. Role of Soot Carbon and Other Carbon Matrices in the Distribution of PAHs among Particles, DOC, and the Dissolved Phase in the Effluent and Recipient Waters of an Aluminum Reduction Plant. pp. 1786-1792.
Nielsen, T., Siigur, K., Helweg, C., Jorgensen, O., Hansen, P.E., Kirso, U., 1997. Sorption of polycyclic aromatic compounds to humic acid as studied by high-performance liquid chromatography. Environ. Sci. Technol. 31, 1102-1108.
Pan, B., Ghosh, S., Xing, B.S., 2008. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration. Environ. Sci. Technol. 42, 1594-1599.
Pellizzari, E.D., Moseley, M.A., Cooper, S.D., 1985. Recent advances in the analysis of polychlorinated-biphenyls in environmental biological media. Journal of Chromatography 334, 277-314.
Pereira, W.E., Hostettler, F.D., Luoma, S.N., van Geen, A., Fuller, C.C., Anima, R.J., 1999. Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California. Mar. Chem. 64, 99-113.
Perminova, I.V., Grechishcheva, N.Y., Kovalevskii, D.V., Kudryavtsev, A.V., Petrosyan, V.S., Matorin, D.N., 2001. Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 35, 3841-3848.
Perminova, I.V., Grechishcheva, N.Y., Petrosyan, V.S., 1999. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptors. Environmental Science & Technology 33, 3781–3787.
Peuravuori, J., 2001. Binding of pyrene on lake aquatic humic matter: the role of structural descriptors. Anal. Chim. Acta 429, 75-89.
Piccolo, A., 2001. The supramolecular structure of humic substances. Soil Science 166, 810-832.
Pino, V., Ayala, J.H., Afonso, A.M., Gonzalez, V., 2003. Micellar microwave-assisted extraction combined with solid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in a certified marine sediment. Anal. Chim. Acta 477, 81-91.
Poerschmann, J., Kopinke, F.D., Pawliszyn, J., 1997a. Solid phase microextraction to study the sorption of organotin compounds onto particulate and dissolved humic organic matter. Environ. Sci. Technol. 31, 3629-3636.
Poerschmann, J., Trommler, U., Nyplova, P., Morgenstern, P., Gorecki, T., 2008. Complexation-flocculation of organic contaminants by the application of oxyhumolite-based humic organic matter. Chemosphere 70, 1228-1237.
Poerschmann, J., Zhang, Z.Y., Kopinke, F.D., Pawliszyn, J., 1997b. Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal. Chem. 69, 597-600.
Puchalski, M.M., Morra, M.J., Vonwandruszka, R., 1992. Fluorescence quenching of sunthrtic organic compounds by humic materials. Environ. Sci. Technol. 26, 1787-1792.
Raber, B., Kogel-Knabner, I., Stein, C., Klem, D., 1998. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere 36, 79-97.
Rav-Acha, C., Rebhun, M., 1992. Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment. Water Res. 26, 1645-1654.
Rebhun, M., DeSmedt, F., Rwetabula, J., 1996. Dissolved humic substances for remediation of sites contaminated by organic pollutants. Binding-desorption model predictions. Water Res. 30, 2027-2038.
Rice, J.A., Tombacz, E., Malekani, K., 1999. Applications of light and X-ray scattering to characterize the fractal properties of soil organic matter. Geoderma 88, 251-264.
Schlautman, M.A., Morgan, J.J., 1993. Effects of Aqueous Chemistry on the Binding of Polycyclic Aromatic-Hydrocarbons by Dissolved Humic Materials. Environ. Sci. Technol. 27, 961-969.
Schwarzenbach, R.P., Westall, J., 1981. Transport of non-polar organic-compounds from surface-water to groundwater laboratory sorption studies. Environ. Sci. Technol. 15, 1360-1367.
Simpson, A.J., Kingery, W.L., Shaw, D.R., Spraul, M., Humpfer, E., Dvortsak, P., 2001. The application of H-1 HR-MAS NMR spectroscopy for the study of structures and associations of organic components at the solid - Aqueous interface of a whole soil. Environ. Sci. Technol. 35, 3321-3325.
Simpson, M.J., Simpson, A.J., Hatcher, P.G., 2004. Noncovalent interactions between aromatic compounds and dissolved humic acid examined by nuclear magnetic resonance spectroscopy. Environ. Toxicol. Chem. 23, 355-362.
Snoeyink, V.L., Jenkins, D., 1980. Water Chemistry. John Wiley & Son, New York, NY, USA.
Stevenson, F.J., 1994. Humus chemistry. John Wiley & Sons, New York, USA.
Sutton, R., Sposito, G., 2005. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39, 9009-9015.
Tanaka, S., Oba, K., Fukushima, M., Nakayasu, K., Hasebe, K., 1997. Water solubility enhancement of pyrene in the presence of humic substances. Anal. Chim. Acta 337, 351–357.
Tavakoli, L., Yamini, Y., Ebrahimzadeh, H., Shariati, S., 2008. Homogeneous liquid-liquid extraction for preconcentration of polycyclic aromatic hydrocarbons using a water/methanol/chloroform ternary component system. J. Chromatogr. A 1196, 133-138.
Tiller, C.L., Jones, K.D., 1997. Effects of dissolved oxygen and light exposure on determination of K-OC values for PAHs using fluorescence quenching. Environ. Sci. Technol. 31, 424-429.
Tombacz, E., 1999. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions. Soil Science 164, 814-824.
Van Noort, P.C.M., Jonker, M.T.O., Koelmans, A.A., 2004. Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs. Environ. Sci. Technol. 38, 3305-3309.
Voice, T.C., Rice, C.P., Weber, W.J., 1983. Effect of Solids Concentration on the Sorptive Partitioning of Hydrophobic Pollutants in Aquatic Systems. Environ. Sci. Technol. 17, 513-518.
Voice, T.C., Weber, W.J., 1983. Sorption of Hydrophobic Compounds by Sediments, Soils and Suspended-Solids .1. Theory and Background. Water Res. 17, 1433-1441.
Voice, T.C., Weber, W.J., 1985. Sorbent Concentration Effects in Liquid Solid Partitioning. Environ. Sci. Technol. 19, 789-796.
von Wandruszka, R., Ragle, C., Engebretson, R., 1997. The role of selected cations in the formation of pseudomicelles in aqueous humic acid. Talanta 44, 805-809.
Wang, W.D., Huang, Y.M., Shu, W.Q., Cao, H., 2007. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J. Chromatogr. A 1173, 27-36.
Wei, M.C., Chang, W.T., Jen, J.F., 2007. Monitoring of PAHs in air by collection on XAD-2 adsorbent then microwave-assisted thermal desorption coupled with headspace solid-phase microextraction and gas chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 387, 999-1005.
Wei, M.C., Jen, J.F., 2003. Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-electron-capture detection. J. Chromatogr. A 1012, 111-118.
Wei, M.C., Jen, J.F., 2007. Determination of polycyclic aromatic hydrocarbons in aqueous samples by microwave assisted headspace solid-phase microextraction and gas chromatography/flame ionization detection. Talanta 72, 1269-1274.
Wershaw, R., Llaguno, E.C., Leenheer, J., Sperline, R., Song, Y., 1996. Mechanism of formation of humus coatings on mineral surfaces .2. Attenuated total reflectance spectra of hydrophobic and hydrophilic fractions of organic acids from compost leachate on alumina. Colloid Surf. A-Physicochem. Eng. Asp. 108, 199-211.
Wershaw, R.L., 1986. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment water system. J. Contam. Hydrol. 1, 29--45.
Wershaw, R.L., 1989. Appilcation of a menbrane model to the sorptive interactions of humic substances. Environ. Health Perspect. 83, 191-203.
Wershaw, R.L., 1993. Model for humus in soil and sediments. Environ. Sci. Technol. 27, 814-816.
Wershaw, R.L., 2004. Evaluation of Conceptual Models of Natural Organic Matter (Humus) From a Consideration of the Chemical and Biochemical Processes of Humification. U.S. Department of the Interior U.S. Geological Survey.
Wilhelm, M., Matuschek, G., Kettrup, A., 2000. Determination of basic nitrogen-containing polynuclear aromatic hydrocarbons formed during thermal degradation of polymers by high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A 878, 171-181.
Woolgar, P.J., Jones, K.C., 1999. Studies on the dissolution of polycyclic aromatic hydrocarbons from contaminated materials using a novel dialysis tubing experimental method. Environ. Sci. Technol. 33, 2118-2126.
Wornat, M.J., Sarofim, A.F., Longwell, J.P., Lafleur, A.L., 1988. Effectt of pyrolysis conditions on the composistion of nitrogen-containing polyaromatic compounds from a bituminous coal. Energy Fuels 2, 775-782.
Xing, B.S., 1997. The effect of the quality of soil organic matter on sorption of naphthalene. Chemosphere 35, 633-642.
Xing, B.S., McGill, W.B., Dudas, M.J., 1994. Cross-correlation of polarity curves to predict partition-coefficients of nonionic organic contaminants. Environ. Sci. Technol. 28, 1929-1933.
Zsolnay, A., 2003. Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113, 187-209.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.88.254.50
論文開放下載的時間是 校外不公開

Your IP address is 3.88.254.50
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code