Responsive image
博碩士論文 etd-0623111-164639 詳細資訊
Title page for etd-0623111-164639
論文名稱
Title
添加氫氧混合氣對柴油引擎多環芳香烴減量與節能之研究
Saving Energy and Reducing Polycyclic Aromatic Hydrocarbons Emissions from a Heavy-Duty Diesel Engine by H2/O2 Addition to the Combustion Chamber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-06-23
關鍵字
Keywords
排放係數、柴油引擎、節能效益、多環芳香烴、氫氧氣
H2/O2, Emission Factor, Fuel Saving, Diesel Engine, PAHs
統計
Statistics
本論文已被瀏覽 5716 次,被下載 0
The thesis/dissertation has been browsed 5716 times, has been downloaded 0 times.
中文摘要
本研究以基礎石化柴油(Base)與添加不同氫氧進氣量(10 至70 L/min)進行柴油引擎排放多環芳香烴(PAHs)特徵之研究,在穩態條件(包含引擎運轉轉速為1,600 rpm 與扭力為145 Nm) 下,進行引擎排放廢氣中21 種PAHs 進行採樣及分析,並進行雙燃料之節能效益評估。
柴油引擎於Base (0 L/min) 排放Total PAHs 排放濃度為106.58 μg/m3,添加氫氧進氣量10 至70 L/min 則分別為101.89、95.30、90.70、85.98、82.35、72.38 及67.30 μg/m3;排放係數分別為6.00、5.73、5.36、4.99、4.84、4.50、4.07 及3.78 mg/bhp-hr;而排放減量成效分別為4.4%、10.6%、14.9%、19.3%、22.7%、32.1%及36.9%,顯示添加氫氧氣能有效的降低PAHs 濃度。
在排放傳統污染物方面,基礎石化柴油(Base)添加不同氫氧進氣量(10 至70 L /min)之CO、CO2、THC 及PM 排放濃度會隨著氫氧進氣量增加而降低;反之,NOx 排放濃度會隨著氫氧進氣量增加而上升。
在雙燃料之節能效益評估方面,綜合引擎耗油油當量與氫氧機耗電油當量,整體之耗能油當量分別為2.42、2.49、2.50、2.48、2.51、2.35、2.18、2.17。可知在添加氫氧進氣量10 至40 L/min 時,整體之油當量隨著增加;而添加氫氧進氣量50 至70 L/min 時,油當量則隨
之減少,表示添加氫氧進氣量50 至70 L/min 能有效的達到節能效益,其添加氫氧進氣量為50 L/min、60 L/min 及70 L/min 之節能效益分別為3.2%、9.8%及10.4%。
Abstract
The emission of polycyclic aromatic hydrocarbons (PAHs) from the diesel engine on a dynamometer by mixing ratio of the fuel (H2/O2 /diesel) was investigated. The engine was operated at a one load steady-state condition of 1,600 rpm with torque and power outputs of 145 Nm and 24.5 kW. In this condition, the measurement of the mixing ratio of the
fuel (H2/O2 /diesel) was first recorded without any induction of H2/O2 mixture (Base) into the engine. Then, seven flow rate levels of H2/O2 mixture were used by 10 L/min, 20 L/min, 30 L/min, 40 L/min, 50 L/min, 60 L/min, and 70 L/min, respectively.
The concentrations of total PAHs were 106.58, 101.89, 95.30, 90.70, 85.98, 82.35, 72.38, and 67.30 μg/m3, respectively for Base (0 L/min), 10 L/min, 20 L/min, 30 L/min, 40 L/min, 50 L/min, 60 L/min, and 70 L/min of H2/O2 mixture. The emission factor of total PAHs were 6.00, 5.73, 5.36, 4.99, 4.84, 4.50, 4.07, and 3.78 mg/bhp-hr, respectively for Base (0 L/min), 10 L/min, 20 L/min, 30 L/min, 40 L/min, 50 L/min, 60 L/min, and 70 L/min of H2/O2 mixture. The removal rate of total PAHs were 4.4%, 10.6%, 14.9%, 19.3%, 22.7%, 32.1%, and 36.9%, respectively for 10 L/min, 20 L/min, 30 L/min, 40 L/min, 50 L/min, 60 L/min, and 70 L/min of H2/O2 mixture. This result showed using H2/O2 mixture significantly reduced emissions of PAHs.
As the regulated harmful matters, using H2/O2 mixture, CO、CO2、THC and PM decreased, whereas the NOx emission increased.
The energy saving of the fuels (H2/O2 /diesel), the total oil equivalents combined by fuel consumption of diesel engine and electricity consumption of H2/O2 generator, were 2.42, 2.49, 2.50, 2.48, 2.51, 2.35, 2.18, and 2.17 for Base (0 L/min), 10 L/min, 20 L/min, 30 L/min, 40 L/min, 50 L/min, 60 L/min, and 70 L/min of H2/O2 mixture. The result showed that reduced saving energy of the fuel (H2/O2 /diesel) by 3.2% for 50 L/min, 9.8% for 60 L/min, and 10.4% for 70 L/min,
respectively.
目次 Table of Contents
謝誌..........................................................................................I
摘要.........................................................................................II
Abstract.................................................................................III
目錄.........................................................................................V
表目錄..................................................................................VIII
圖目錄....................................................................................X

第一章 前言........................................................................1-1
1.1 研究緣起......................................................................1-1
1.2 研究目標......................................................................1-2

第二章 相關研究及文獻回顧............................................2-1
2.1 能源概況......................................................................2-1
2.1.1 能源現況...................................................................2-1
2.1.2 氫氣之特性...............................................................2-5
2.1.3 氫氣的生成與來源...................................................2-7
2.1.4 雙燃料車使用現況...................................................2-9
2.2 多環芳香烴化合物 (PAHs)… .................................2-13
2.2.1 PAHs 之特性.........................................................2-13
2.2.2 PAHs 之危害.........................................................2-17
2.2.3 PAHs 之來源.........................................................2-21
2.2.4 PAHs 之生成機制.................................................2-25
2.3 柴油引擎及排放特徵................................................2-27
2.3.1 柴油引擎運轉方式.................................................2-27
2.3.2 柴油引擎PAHs 之排放特徵.................................2-29
2.3.3 不同油品中芳香烴對柴油車排放PAHs 之影響.2-30

第三章 研究方法與步驟....................................................3-1
3.1 研究架構與流程..........................................................3-1
3.2 現場採樣......................................................................3-2
3.3 採樣方法與設備..........................................................3-3
3.3.1 柴油引擎...................................................................3-3
3.3.2 氫氧機.......................................................................3-3
3.3.3 三相電力分析儀.......................................................3-4
3.3.4 PAHs 採樣................................................................3-4
3.3.5 排氣取樣設備...........................................................3-5
3.3.6 樣品分析...................................................................3-6
3.4 PAHs 分析之品質保證與品質控制.........................3-10
3.4.1 空白試驗.................................................................3-10
3.4.2 檢量線之配置.........................................................3-10
3.4.3 方法偵測極限.........................................................3-11
3.4.4 準確度.....................................................................3-12
3.4.5 精密度.....................................................................3-12

第四章 結果與討論............................................................4-1
4.1 燃料特性與比例..........................................................4-1
4.1.1 柴油與氫氣特性.......................................................4-1
4.1.2 柴油與氫氧氣比例...................................................4-2
4.2 柴油引擎添加不同氫氧進氣量之傳統污染物排放濃度.........................................................................................4-4
4.2.1 傳統污染物排放濃度...............................................4-4
4.2.2 傳統污染物之排放係數.........................................4-12
4.2.3 傳統污染物之排放減量.........................................4-15
4.3 柴油引擎添加不同氫氧進氣量之PAHs 排放濃度.4-19
4.3.1 PAHs 排放濃度.....................................................4-19
4.3.2 PAHs 排放濃度百分比.........................................4-23
4.3.3 PAHs 排放係數....................................................4-25
4.3.4 PAHs 之排放減量.................................................4-29
4.3.5 柴油引擎廢氣中PAHs 之毒性當量係數.............4-33
4.4 柴油引擎以不同替代燃料之相關文獻....................4-38
4.4.1 柴油引擎以不同替代燃料之傳統污染物相關文獻.......................................................................................4-38
4.4.2 柴油引擎以不同替代燃料之PAHs 相關文獻.....4-44
4.5 雙燃料之節能效益評估............................................4-49
4.5.1 引擎耗油量.............................................................4-49
4.5.2 氫氧機耗電量.........................................................4-51
4.5.3 節能效益評估.........................................................4-51

第五章 結論與建議............................................................5-1
5.1 結論..............................................................................5-1
5.2 建議..............................................................................5-3

參考文獻...........................................................................參-1
附錄A.............................................................................. 附A-1
參考文獻 References
Akio, K., Youki, O., 1987. Mutagenic Activity and PAH Analysis in Municipal Incinerator. The Science of Total Environment 61, 37 − 49.
Al-Hasan, M., 2003. Effect of Ethanol−Unleaded Gasoline Blends on Engine Performance and Exhaust Emission. Energy and Conversion Management 44. 1547 – 1561.
Anderson, J.W., Jones, J.M., Steinert, S., Sanders, B., Means, J., McMillin, D., Vu, T., Tukey, R., 1999. Correlation of CYP1A1 Induction, as Measured by the P450 RGS Biomarker Assay, with High Molecular Weight PAHs in Mussels Deployed at Various Sites in San Diego Bay in 1993 and 1995. Marine Environmental Research 48. 389 − 405.
Bari, S., Esmaeil, M.M., 2010. Effect of H2/O2 Addition in Increasing the Thermal Efficiency of a Diesel Engine. Fuel 89, 378 – 383.
Bjørseth, A., Becher, G., 1986. PAH in Work Atmospheres: Occurrence and Determination. CRC Press, Inc. Boca Raton, Florida, ISBN 0-8493-6064-1.
Bjørseth, A., Ramahl, T., 1983. Sources and Emission of PAH. Handbook of Polycyclic Aromatic Hydrocarbons 1. Marcel Dekker, Inc. New York and Basel.
Bose, P.K., Maji, D., 2009. An Experimental Investigation on Engine Performance and Emissions of a Single Cylinder Diesel Engine Using Hydrogen as Inducted Fuel and Diesel as Injected Fuel with Exhaust Gas Recirculation. International Journal Hydrogen Energy 34. 4847 − 4854.
British Petroleum., 2009, BP Statistical Review of World Energy.
Broströem, L.E., Loevblad, G., 1991. Deposition of Soot Related Hydrocarbons During Long−Range Transport of Pollution to Sweden. Atmospheric
Environment 25A, 2251 − 2257.
Caricchia, A.M., Chiavarini, S., Pezza, M., 1999. Polycyclic Aromatic Hydrocarbons in the Urban Atmospheric Particulate Matter in the City of Naples (Italy). Atmospheric Environment 33, 3731 − 3738.
Cavalieri, E.L., Rogan, E.G., 1995. Central Role of Radical Cations in Metabolic Activation of Polycyclic Aromatic Hydrocarbons. Xenobiotica 25, 677 − 688.
Chen, K.C., Wang, H.K., Peng, Y.P., Wang, W.C., Chen, C.H., 2008. Effects of Open
Burning of Rice Straw on Concentrations of Atmospheric Polycyclic Aromatic Hydrocarbons in Central Taiwan. Air & Waste Management Association 58, 1318 − 1327.
Chen, Y., Bi, X., Mai, B., Sheng, G., Fu, J., 2004. Emission Characterization of Particulate/Gaseous Phase and Size Association for Polycyclic Aromatic Hydrocarbons form Residential Coal Combustion. Fuel 83, 781 − 790.
Clarke, S., Dicks, A., Pointon, K., Smith, T., Swann, A., 1997. Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells.
Catalysis Today 38, 411 − 423.
Cope, V.W., Kalkwarf, D.R., 1987. Photooxidation of Selected Polycyclic Aromatic Hydrocarbons and Pyrenequinones Coated on Glass Surfaces. Environmental Science & Technology 21, 643 − 648.
Crittenden, A.D., Long, R., 1976. In Carcinogenesis−A Comprehensive Survey, Vol. 1, R. I. Freudenthal and P. W. Jones (Eds.), Raven Press, New York, 209.
Das, L.M., 2002. Hydrogen Engine: Research and Development (R&D) Programmes in Indian Institute of Technology (IIT), Delhi. International Journal of Hydrogen Energy 27, 953 – 965.
Davis, C.S., Fellin, P., Otson, R., 1987. A Review os Sampling Methods for Polynuclear Aromatic Hydrocarbons in Air. Journal of Applied Crystallography 37, 1397 − 1408.
Desantes, J.M., Bermudez, V., Garcia, J.M., Fuentes, E., 2005. Effects of Current Engine Strategies on the Exhaust Aerosol Particle Size Distribution from a
Heavy−Duty Diesel Engine. Aerosol Science 36, 1251 − 1276.
Dias, J.R., 1987. Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons, Elsevier, Amsterdam.
Fairbanks, J.W., 2000. The Diesel Engines Challenge in the New Millennium. Diesel Engine Emission Reduction Workshop 6, 20 − 24.
Frenklach, M., Clary, D.W., Yuan, T., Gardine, C.W., Stein, S.E., 1985. Detailed
Kinetic Modeling of Soot Sybposium (International) on Combustion. The Combustion Institute, Pittsburgh, 887.
Gertler, A.W., Sagebiel, J.C., Dippel, W.A., Farina, R.J., 1998. Measurements of
Dioxin and Furan Emission Factors from Heavy−Duty Diesel Vehicles. Journal of the Air & Waste Management Association 48, 276 − 278.
Grimmer, G., 1983. Environment Carcinogens: Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology 24, 1581 − 1588.
Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source Apportionment of
Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environmental Science & Technology 30, 825 −
832.
He, C., Ge, Y., Tan, J., You, K., Han, X., Wang, J., 2010. Characteristics of Polycyclic Aromatic Hydrocarbons Emissions of Diesel Engine Fueled with Biodiesel and Diesel. Fuel 89, 2040 – 2046.
Heywood, J.B., 1988. Internal Combustion Engine Fundamentals. New York: McGraw−Hill Book Company.
Ho, K.F., Lee, S.C., 2002. Identification of Atmospheric Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs) and Carbonyl
Compounds in Hog Kong. The Science of the Total Environment 289, 145 − 158.
Hoffman, E.J., Mills, G.L., Latimer, J.S., Quinn, J.G., 1984. Urban Runoff as a source of Polycyclic Aromatic Hydrocarbons to Coastal Waters. Environmental
Science & Technology 18, 580 − 587.
Howsam, M., Jones, K.C., Ineson, P., 2000. PAHs Associated with the Leaves of Tree Species. I−Concentrations and Profiles. Environmental Pollution. 108, 413 − 424.
IARC., 1983. Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental and Experimental Data. Office of Health and Environmental Assessment, US
EPA., Washington, D.C.
IARC., 1987. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. International Agency for Research on Cancer (IARC), Supplement 7, Lyons.
Janssen, H., Bringmann, J., Emonts, B., Schroeder, V., 2004. Safety − Related Studies on Hydrogen Production in High−Pressure Electrolysers. Hydrogen Energy 29, 759 − 770.
Jean, L.B., Anne, M., Olivier, P., Nicolas, M., Nathalie, C., Muriel, S., Pierre, M., 2001. Particulate PAHs Observed in the Surrounding of a Municipal Incinerator. Atmospheric Environment 35, 6093 − 6104.
Josephy, P.D., 1997. Polycyclic Aromatic Hydrocarbon Carcinogenesis, Molecular Toxicology, Oxford University Press, New York, 315 − 351.
Katz, M., Chan, C., 1980. Comparative Distribution of Eight Polycyclic Aromatic
Hydrocarbons in Airborne Particulates Collected by Conventional High−Volume Sampling and by Size Fractionation. Environmental Science & Technology 14, 838 − 843.
Keller, C.D., Bidleman, T.F., 1984. Collection of Airborne Polycyclic Aromatic Hydrocarbons and Other Organic a Glass Fiber Filter−Polyurethane Foam
System. Atmospheric Environment 18, 837 − 845.
Kerminen, V.M., MÄKELÄ, T.E., Ojanen, C.H., Hillamo, R.E., Vilhunen, J.K.,
Rantanen, L., Havers, N., Bohlen, A.V., Klockow, D., 1997. Characterization of the Particulate Phase in the Exhaust from a Diesel Car. Environmental Science &
Technology 31, 1883 − 1889.
Kieser, R.D., 1988. Diesel Engines: Future Trends. Automotive Engineering 96, 39 − 46. Klaassen, C.D., 1996. Casarett and Doull’s Toxicology: The Basic Science of Poisons.New York Mc−Graw−Hill Companies Inc.
Krishnamurthy, M., Carder, D.K., Thompson, G., Gautam, M., 2007. Cost of Lower NOx Emissions: Increased CO2 Emissions from Heavy−Duty Diesel Engines. Atmospheric Environment 41, 666 – 675.
Kulkarni, P., Venkataraman, C., 2000. Atmospheric Polycyclic Aromatic Hydrocarbons in Mumbai, India. Atmospheric Environment 34, 2785 − 2790.
Lai, C.H., Chen, K.S., Wang, H.K., 2009a. Influence of Rice Straw Burning on the
Levels of Polycyclic Aromatic Hydrocarbons in Agricultural County of Taiwan. Journal of Environmental Sciences 21, 1200 − 1207.
Lai, C.H., Li, H.C., Chen, K.S., 2009b. Source Characterization and Environment
Impact of Open Burning of Rice Straw Residues on Polycyclic Aromatic
Hydrocarbons in Agricultural County, Taiwan. Journal of Environmental Engineering and Management 19, 79 − 88.
Lapuerta, M., Armas, O., Rodríguez-Fernández, J., 2008. Effect of Biodiesel Fuels on Diesel Engine Emissions. Progress in Energy and Combustion Science 34, 198 – 223.
Leonardi, A., Burtscher, H., Siegmann, H.C., 1993. Size−Dependent Measurement of Aerosol Photoemission from Particles in Diesel Exhaust. Atmoshperic Environment 27, 1251 − 1254.
Li, C.K., Kamens, R.M., 1993. The Use of Polycyclic Aromatic Hydrocarbons as
Source Signatures in Receptors Modeling. Atmospheric Environment 27, 523 − 532.
Li, C.S., Ro, Y.S., 2000. Indoor Characteristics of Polycyclic Aromatic Hydrocarbons in the Urban Atmospheric of Taipei. Atmospheric Environment 34, 611 − 620.
Li, C.T., Lee, W.J., Wu, C.H., Wang, Y.T., 1995. PAH Emission from Waste Ion−exchange Resin Incineration. Science of the Total Environment 155, 253 − 266.
Li, D.G., Huang, Z., Lu, X.C., Zhang, W.G., Yang, J.G., 2005. Physico−Chemical
Properties of Ethanol–Diesel Blend Fuel and Its Effect on Performance and Emissions of Diesel Engines. Renewable energy 30, 967 – 976.
Lin, Y.C., Lee, W.J., Li, H.W., Chen, C.B., Fang, G.C., Tsai, P.J., 2006. Impact of
Using Fishing Boat Fuel with High Poly Aromatic Content on the Emission of Polycyclic Aromatic Hydrocarbons from the Diesel Engine. Atmospheric
Environment 40, 1601 – 1609.
Lodge Jr., J.P., 1989. Methods of Air Sampling and Analysis. 3rd ed., Lewis Publishers, Inc., Chelsea, Michigan.
Masclet, P., Mouvier, G., Nikolaou, K., 1986. Relative Decay Index and Source of Polycyclic Aromatic Hydrocarbons. Atmospheric Environment 20, 439 − 446.
Masood, M., Ishrat, M.M., Reddy, A.S., 2007. Computational Combustion and Emission Analysis of Hydrogen−Diesel Blends with Experimental Verification. International Journal of Hydrogen Energy 32, 2539 – 2547.
Mastral, A.M., Garcia, T., Callen, M.S., 2001. Effects of Limestone on Polycyclic Aromatic Hydrocarbon Emissions during Coal Atmospheric Fluidized Bed
Combustion. Energy Fuel 15, 1469 − 1474.
Menzie, C.A., Potocki, B.B., Santodonato, J., 1983. Exposure to Carcinogenic PAHs in the Environment. Environmental Science & Technology 26, 1278 − 1284.
Mi, H.H., Lee, W.J., Chen, C.B., Yang, H.H., Wu, S.J., 2000. Effect of Fuel Aromatic Content on PAH Emission from a Heavy−Duty Diesel Engine. Chemosphere 41, 1783 − 1790.
Mi, H.H., Lee, W.J., Wu, T.L., Lin, T.C, Wang, L.C., Chao, H.R, 1996. PAH Emission from a Gasoline−Powered Engine. Journal Environment Science Health 31, 1981 − 2003.
Michael, B.S., Andrea, M.M., 1998. Restaurant Smoking Restrictions and Environment Tobacco Smoke Exposure. American Journal of Public Health 88, 1834 − 1836.
Nielsen, T., 1996. Traffic Contribution of Polycyclic Aromatic Hydrocarbons in the Center of a Large City. Atmospheric Environment 30, 3481 − 3490.
Nisbet, C., LaGcy, P., 1992. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16, 290 − 300.
Mumford, J.L., 1987. Lung Cancer and Indoor Air Pollution in Xuanwei, China. Science 235, 217 − 220.
Mustafa Canakci., 2007. Combustion Characteristics of a Turbocharged DI Compression Ignition Engine Fueled with Petroleum Diesel Fuels and Biodiesel. Bioresource Technology 98, 1167 – 1175.
Omar, N.Y.M.J., Abas, M.R.B., Ketuly, K.A., Tahir, N.M., 2002. Concentrations of
PAHs in Atmospheric Particles (PM-10) and Roadside Soil Particles Collected in Kuala Lumpur, Malaysia. Atmospheric Environment 36, 247 − 254.
Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen, H., Li, R., 2006. Characteristics of Carbonyl Compounds Emission from a Diesel-Engine Using Biodiesel–Ethanol–Diesel as Fuel. Atmospheric Environment 40, 7057 − 7065.
Papagiannakis, R.G., Hountalas, D.T., 2003. Experimental Investigation Concerning the Effect of Natural Gas Percentage on Performance and Emissions of a DI Dual Fuel Diesel Engine. Applied Thermal Engineering 23, 353 – 365.
Papagiannakis, R.G., Kotsiopoulos, P.N., Zannis, T.C., Yfantis, E.A., Hountalas, D.T.,
Rakopoulos, C.D., 2010. Theoretical Study of the Effects of Engine Parameters on Performance and Emissions of a Pilot Ignited Natural Gas Diesel Engine. Energy 35, 1129 – 1138.
Park, S.S., Kim, Y.J., Kang, C.H., 2002. Atmospheric Polycyclic Aromatic Hydrocarbons in Seoul, Korea. Atmospheric Environment 36, 2917 − 2924.
Parkinson, P., 1992. Casarett and Doull’s Toxicology: The Basic Science of Poisons, Unit 2: Disposition of toxicants. 5th Ed., New York, Pergamon Press, 114 − 125.
Pedersen, P.S., Ingwersen, J., Nielsen, T., Larsen, E., 1980. Effects of Fuel, Lubricant and Engine Opetrating Parameters on the Emission of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology 14, 71 − 79.
Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., Kyritsis,
D.C., 2010. Effects of Butanol–Diesel Fuel Blends on the Performance and Emissions of a High–Speed DI Diesel Engine. Energy Conversion and Management 51, 1989 – 1997.
Rakopoulos, D.C., Rakopoulos, C.D., Kakaras, E.C., Giakoumis, E.G., 2008. Effects
of Ethanol–Diesel Fuel Blends on the Performance and Exhaust Emissions of Heavy Duty DI Diesel Engine. Energy Conversion and Management 49, 3155 – 3162.
Roy, M.M., Tomita, E., Kawahara, N., Harada, Y., Sakane, A., 2010. An Experimental Investigation on Engine Performance and Emissions of a
SuperCharged H2−Diesel Dual−Fuel Engine. International Journal of Hydrogen energy 35, 844 – 853.
Saravanan, N., Nagarajan, G., Sanjay, G., Dhanasekaran, C., Kalaiselvan, K.M., 2008. Combustion Analysis on a DI Diesel Engine with Hydrogen in Dual Fuel Mode. Fuel 87, 3591 – 3599.
Schinder, K.P., 1992. Integrated Diesel European Action (IDEA): Study of Diesel Combustion. SAE Paper 920591.
Semdley, J.M., Williams, A., Bartle, K.D., 1992. A Mechanism for the Formation of Soot Particles and Soot Deposits. Combustion and Flame 91, 71 − 82.
Senthil, K.M., Ramesh, A., Nagalingam, B., 2003. Use of Hydrogen to Enhance the
Performance of a Vegetable Oil Fuelled Compression Ignition Engine. International Journal of Hydrogen Energy 10, 1143 – 1154.
Shah, V., Garg, N., Madamwar, D., 2001. Ultrastructure of the Fresh Water
Cyanobacterium Anabaena Variabilis SPU 003 and Its Application for Oxygen−Free Hydrogen Production. FEMS Microbiology Letters 194, 71 − 75.
SinghYadav, V., Soni, S.L., Sharma, D., 2011. Performance and Emission Studies of
Direct Injection C.I. Engine in Duel Fuel Mode (Hydrogen−Diesel) with EGR. International Journal Hydrogen Energy.
Sisovic, A., Fugas, M., 1997. Smoke Concentration as an Indicator of Polycyclic Aromatic Hydrocarbons Levels in the Air. Environmental Monitoring and
Assessment 45, 201 − 207.
Soontjens, C.D., Holmberg, K., Westerholm, R.N., Rafter, J.J., 1997. Characterization
of Polycyclic Aromatic Compounds in Diesel Exhaust Particulate Extract Responsible for Aryl Hydrocarbon Receptor Activity. Atmospheric Enviromnent 31, 219 − 225.
Spotswood, T.M., Badger, K., 1960. The Formation of Aromatic Hydrocarbons at High Temperature Part Ⅸ . The Pyrolysis of Toluene, Ehylbenzene,
Propylbenzene and Butylbenzene. Journal of Chemistry Society (London), 4420 − 4427.
Terzi, E., Samara, C., 2004. Gas−Particle Partitioning of Polycyclic Aromatic Hydrocarbons in Urban, Adjacent Coastal, and Continental Background Sites of Western Greece. Environmental Science & Technology 38, 4973 – 4978.
Teschke, K., Hertzman, C., Nettrn, C.V., 1989. Potential Exposure of Cooks to Airborne Mutagens and Carcinogens. Environmental Research 50, 261 − 308.
Tsai, P.J., Shih, T.S., Chen, H.L., Lee, W.J., Lai, C.H., Liou, S.H., 2004. Assessing
and Predicting the Exposures of Polycyclic Aromatic Hydrocarbons (PAHs) and Their Carcinogenic Potencies from Vehicle Engine Exhausts to Highway Toll Station Workers. Atmospheric Environment 38, 333 – 343.
Tuominen, J., Salomss, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela., T., Sorsa,
M., Pohjola, V., Sauri, M., Himberg, K., 1988. Polycyclic Aromatic
Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic Season and Meteorological Conditions. Environmental Science & Technology 22, 1228 − 1234.
US. EPA, 1987. Locating and Estimating Air Emission form Sources of Polycyclic Organic Matter (POM). EPA-45014-84-007.
US. EPA, 2003. Appendix A to 40 CFR, Part 423 – 126 Priority Pollutants.
Wang, S., Ji, C., Zhang, B., 2010. Effect of Hydrogen Addition on Combustion and
Emissions Performance of a Spark−Ignited Ethanol Engine at Idle and Stoichiometric Conditions. International Journal of Hydrogen Energy 35, 9205
− 9213.
Westerholm, R., Li, H., 1994. A Multivariate Statistical Analysis of Fuel − Related
Polycyclic Aromatic Hydrocarbon Emission from Heavy−Duty Diesel Vehicles. Environmental Science & Technology 28, 965 − 972.
Wey, M.Y., Shi, J.K., 1997. Effect of Pressure Fluctuations on PAHs Emission and
Combustion Efficiency during Incineration. Toxicological and Environmental Chemistry 61,83 − 98.
Williams, P.T., Baetle, K.D., Andrews, G.E., 1986. The Relation between Polycyclic Aromatic Compounds in Diesel Fuels and Exhaust Particles. Fuel 65, 1150 −
1158.
Wybraniec, S., De Jong, A.P., 1996. Modified Sampling and Analysis Method for
Large Volatility Range Airbone Polycyclic Aromatic Hydrocarbons (PAH) Using Gas Chromatography−Mass Spectrometry. Journal of Analytical Chemistry 356, 396 − 402.
Yang, H.H., Chiang, C.F., Lee, W.J., Hwang, K.P., Wu, M.F., 1999. Size Distribution and Dry Deposition of Road Dust PAHs. Environment International 25, 585 −
597.
Yang, H.H., Lo, M.Y., Lan, J.C.W., Wang, J.S., Hsieh, D.P.H., 2007. Characteristics
of Trans, Trans−2, 4−Decadienal and Polycyclic Aromatic Hydrocarbons in Exhaust of Diesel Engine Fueled with Biodiesel. Atmospheric Environment 41,
3373 − 3380.
Yang, H.H., Lee, W.J., Chen, S.J., Lai, S.O., 1998. PAH Emission from Various Industrial Stacks. Journal of Hazardous Materials 60, 159 − 174.
Yasuda, K., Kaneko, M., Sugiyma, K., Yashino, H., Otsuka, Y., 1989. Basic Research
on the Emission of Polycyclic Aromatic Hydrocarbon Caused by Waste Incineration. Journal of Applied Crystallography 39, 1557 − 1561.
Yuan, C.S., Lin, Y.C., Tsai, C.H., Wu, C.C., Lin, Y.S., 2009. Reducing Carbonyl
Emissions from a Heavy−Duty Diesel Engine at US Transient Cycle Test by Use of Paraffinic/Biodiesel Blends. Atmospheric Environment 43, 6175 – 6181.
Zervas, E., Poulopoulos, S., Philippopoulos, C., 2006. CO2 Emissions Change from
the Introduction of Diesel Passenger Cars: Case of Greece. Energy 31, 2915 – 2925.
王信凱,2008,「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研究」, 國立中山大學環境工程研究所,博士論文。
王琳麒,1997,「石化廢棄物焚化爐排放多環芳香烴特徵之影響」,國立成功大學環境工程研究所,碩士論文。
王雅玢,1994,「交通污染源大氣中多環芳香烴化合物特徵之探討」,國立成功大學環境工程研究所,碩士論文。
米孝萱,1998,「移動性污染源排放多環芳香烴化合物之特徵」,國立成功大學環境工程學系,博士論文。
行政院勞工委員會,1997,物質安全資料表−氫氣。
曲新生、陳發林、呂錫民,2007,產氫與儲氫技術,臺北市:五南圖書出版股份有限公司。
江鴻龍、黃政雄、陳世裕、林國雄、戴志遠、吳家豪、滿政顗、賴彥銘、張笙又、林承賢,2006,「高屏地區移動源細微粒(PM2.5)調查及分析實驗建置研」究,
行政院國家科學委員會專題研究計畫,NSC94-EPA-Z-039-006-。
呂局校,2006,「高雄市大氣中多環芳香烴化合物濃度特徵之調查分析」,國立中山大學環境工程研究所,碩士論文。
汪國禎,2001,汽車學(三)柴油引擎篇,台南:復文書局。
李興旺,2004,「石化柴油及添加生質柴油引擎排放多環芳香烴之特徵」,國立成功大學環境工程學系,碩士論文。
吳志榮,1997,「金屬鹽類添加劑對苯焚化之PAHs 生成影響之研究」,東海大學環境科學系,碩士論文。
周函螢,2008,「燒烤煙霧中多環芳香族碳氫化合物氣、固相與粒徑分布特性之研究」,輔仁大學公共衛生學系,碩士論文。
林健三,2008,環境工程概論,臺北市:鼎茂圖書出版股份有限公司。
林啟同,2007,「柴油引擎使用生質燃料之清淨性評估」,遠東科技大學機械工程系,碩士論文。
林淵淙,2000,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,國立成功大學環境工程學系,碩士論文。
林淵淙,2006,「生質柴油及乳化柴油對柴油引擎排放廢氣污染減量及提升能源效率之研究」,國立成功大學環境工程學系,博士論文。
張家修、李國興、林屏杰、吳石乙、林秋裕,2002,以環境微生物技術生產清潔能源−氫氣。中國化學工程學會,第49卷第6期,85 − 104。
莊茂隆,1995,「石化工業區及交通污染源區之多環芳香烴化合物的濃度特徵與粒徑分佈」,國立成功大學環境工程學系,碩士論文。
陳千翔,2006,「大氣多環芳香烴濃度於露天燃燒地區之時空分佈特徵」,國立中山大學環境工程研究所,碩士論文。
陳恭府,2005,「超低硫柴油摻配生質柴油之油品特性及污染排放分析」,國立中山大學環境工程研究所,碩士論文。
陳峰毅,2003,「不同油品對機車引擎排放多環芳香烴特徵之影響」,南台科技大學化學工程研究所,碩士論文。
黃志偉,1999,「柴油車排放廢氣中多環芳香烴化合物之特徵研究」,國立成功大學環境工程學系,碩士論文。
經濟部能源局,2010,http://www.moeaec.gov.tw/Default.aspx?group=2。
經濟部標準檢驗局,http://www.bsmi.gov.tw/wSite/index.jsp。
葛應欽、黃吉志、林相如、王姿乃、陳志樑、李建宏,1994,「不吸菸婦女肺癌流行病學研究」,行政院衛生署,NSC83-0412-B037-049。
賴順安,1999,「鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵」,國立成功大學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.44.223
論文開放下載的時間是 校外不公開

Your IP address is 18.188.44.223
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code