Responsive image
博碩士論文 etd-0623111-164705 詳細資訊
Title page for etd-0623111-164705
論文名稱
Title
以二甲醚混合柴油對柴油引擎醛酮類化合物排放特徵之研究
Characteristics of carbony compounds from a heavy-duty diesel engine fueled with dimethyl ether-diesel blend
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
199
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-06-23
關鍵字
Keywords
醛酮類化合物、二甲醚、柴油引擎、臭氧生成潛勢
Dimethyl Ether, Carbonyls, Diesel Engine, Ozone Formation Potential
統計
Statistics
本論文已被瀏覽 5634 次,被下載 0
The thesis/dissertation has been browsed 5634 times, has been downloaded 0 times.
中文摘要
本研究以不同二甲醚進氣量(以10 L為單位,由0 L/min增加至60 L/min)為輔助燃料與柴油混合,測試柴油引擎之醛酮類化合物(穩態1600 rpm、145 Nm條件之下)共8種醛酮之採樣及分析,並討論柴油引擎性能及醛酮類化合物之臭氧生成潛勢(OFP)。

傳統污染物之排放結果,CO、THC及PM之排放將隨著二甲醚添加量增加排放量呈上升趨勢,NOX之排放則隨著進氣量增加從每分鐘10 L、20 L、30 L、40 L、50 L及60 L其削減率分別為6.8%、8.3%、10.0%、10.6%、13.1%及15.4%,顯示二甲醚可降低NOX之排放。

不同二甲醚添加量對總醛酮化合物排放之影響,從進氣量0 L、10 L、20 L、30 L、40 L、50 L及60 L其濃度分別為2507.44 mg/m3、2665.27 mg/m3、2726.67 mg/m3、2958.07 mg/m3、4645.87 mg/m3、5470.20 mg/m3及7279.91 mg/m3;其排放係數為143.58 mg/bhp-hr、152.65 mg/bhp-hr、156.62 mg/bhp-hr、168.69 mg/bhp-hr、266.22 mg/bhp-hr、312.38 mg/bhp-hr及416.36 mg/bhp-hr,顯示二甲醚的添加將造成柴油引擎醛酮類化合物排放增加。

以柴油為基礎燃油(0 L/min)加以氣體二甲醚進氣量(10、20、30、40、50及60 L/min)為柴油燃料之混合添加物,臭氧生成潛勢之影響隨著進氣量增加總臭氧生成潛勢分別為21945.93 mg-O3/m3、23698.40 mg-O3/m3、24427.46 mg-O3/m3、26672.98 mg-O3/m3、42683.69 mg-O3/m3、50519.26 mg-O3/m3及67710.60 mg-O3/m3,臭氧生成強度由無添加(0 L)之8.75上升至60 L之9.30。
Abstract
In this research, used dimethyl ether as second fuel blended with diesel (mixed quantity with 10 L/min to 60 L/min, interval 10L/min), which test behavior of diesel engine and carbonyls emission investigated. The engine operated at steady-state condition of 1600 rpm, 145 Nm torque , eight kinds of carbonyls were sampling and analysis, and discuss the performance of the ozone formation potential (OFP).

The results of regulated pollutant emissions, CO, THC and PM emission could increasing with the addition of DME, NOX emissions, along with the mixed rate of per minute from 10 L, 20 L, 30 L, 40 L, 50 L and 60 L of its reduction rate was 6.8%、8.3%、10.0%、10.6%、13.1% and 15.4%, shows that the DME can reduce NOX emissions.

Add a various amount of dimethyl ether , which carbonyl compounds emission from the gas flow 0 L(with neat diesel), 10 L, 20 L, 30 L, 40 L, 50 L and 60 L concentrations were 2507.44 g/m3, 2665.27 g/m3, 2726.67 g/m3, 2958.07 g/m3, 4645.87 g/m3, 5470.20 g/m3 and 7279.91 g/m3; the emission factor of 143.58 mg/bhp-hr, 152.65 mg/bhp-hr, 156.62 mg/bhp-hr, 168.69 mg/bhp-hr, 266.22 mg/bhp-hr, 312.38 mg/bhp-hr and 416.36 mg/bhp-hr, shows the addition of DME will rising the carbonyl compound emissions of diesel engine.

Gas of dimethyl ether (10,20,30,40,50 and 60 L/min) into the neat diesel fuel (0 L/min) as a mixture fuel additives, the effect of ozone formation potential as increase in the total ozone formation potential, 21945.93 g-O3/m3, 23698.40 g-O3/m3, 24427.46 g-O3/m3, 26672.98 g-O3/m3, 42683.69 g-O3/m3, 50519.26 g-O3/m3 and 67710.60 g-O3/m3 respectively, and ozone manufacturability will 0 L/min of 8.75 increased to 60 L/min of 9.30.
目次 Table of Contents
致謝 I
摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
附表目錄 XI
附圖目錄 XII

第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目的 1-3

第二章 文獻回顧 2-1
2.1 能源 2-1
2.1.1 全球能源供需趨勢 2-1
2.1.2 國內能源供需概況 2-3
2.1.3 柴油引擎常用之燃料 2-5
2.2 柴油引擎 2-16
2.2.1 柴油引擎簡介 2-16
2.2.2 柴油引擎的運轉過程 2-17
2.2.3 柴油引擎之燃燒過程 2-19
2.3 醛酮化合物 2-22
2.3.1 醛酮化合物之特性 2-22
2.3.2 醛酮化合物之來源 2-23
2.3.3 醛酮化合物之轉化反應 2-25
2.3.4 醛酮化合物之毒性特徵 2-27
2.4 污染排放 2-32
2.4.1 引擎之傳統污染物排放特徵 2-32
2.4.2 引擎之醛酮化合物排放特徵 2-40
2.4.3二甲醚生成甲醛之研究 2-45
2.4.4 引擎之排放因子與污染物之關係 2-46

第三章 研究方法與步驟 3-1
3.1 研究架構與流程 3-1
3.2實驗流程規劃 3-2
3.3 採樣方法與設備 3-4
3.3.1 柴油引擎 3-4
3.3.2 測功機 3-4
3.3.3 低流量空氣採樣器 3-5
3.3.4 吸附管(Cartridge) 3-6
3.3.5 柴油 3-7
3.3.6 二甲醚 3-8
3.3.7 流量計 3-9
3.4 污染物檢測及採樣程序 3-10
3.5 分析設備及程序 3-13
3.6 Carbonyls分析之品質保證與品質控制 3-14
3.6.1 空白試驗 3-14
3.6.2 方法偵測極限 3-14
3.6.3 檢量線之配置 3-15
3.6.4 準確度 3-15
3.6.5 精密度(RSD) 3-16
3.7 臭氧生成潛勢 3-20

第四章 結果與討論 4-1
4.1 以二甲醚與柴油混合對引擎性質之影響 4-1
4.1.1 以二甲醚與柴油混合對柴油引擎耗能之影響 4-1
4.1.2 以二甲醚與柴油混合對柴油引擎熱能消耗之影響 4-4
4.1.3 以二甲醚與柴油混合對引擎制動熱效率性質之影響 4-6
4.2 以二甲醚與柴油混合對傳統污染物排放之影響 4-9
4.2.1以二甲醚與柴油混合對一氧化碳(CO)排放之影響 4-9
4.2.2 以二甲醚與柴油混合對氮氧化合物(NOX)之影響 4-10
4.2.3 以二甲醚與柴油混合對碳氫化合物(THC)排放之影響 4-13
4.2.4 以二甲醚與柴油混合對懸浮微粒(PM)排放之影響 4-15
4.2.5 文戲回顧與研究結果異同之探討 4-18
4.3 以二甲醚與柴油混合對柴油引擎醛酮類化合物排放影響 4-20
4.3.1 以二甲醚與柴油混合對柴油引擎總醛酮化合物之影響 4-20
4.3.2 以二甲醚與柴油混合對醛酮類化合物排放比例之影響 4-22
4.3.3 以二甲醚與柴油混合對柴油引擎甲醛排放之影響 4-24
4.3.4 以二甲醚與柴油混合對乙醛排放之影響 4-26
4.3.5 以二甲醚與柴油混合對柴油引擎丙烯醛排放之影響 4-29
4.3.6 以二甲醚與柴油混合對柴油引擎丙酮排放之影響 4-32
4.3.7 以二甲醚與柴油混合對柴油引擎丙醛排放之影響 4-35
4.3.8 以二甲醚與柴油混合對柴油引擎2-丁烯醛排放之影響 4-38
4.3.9 以二甲醚與柴油混合對柴油引擎丁醛排放之影響 4-41
4.3.10 以二甲醚與柴油混合對柴油引擎苯醛排放之影響 4-44
4.4 以二甲醚與柴油混合對醛酮化合物臭氧生成潛勢之影響 4-48

第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-3

參考文獻 參-1
附錄A 附A-1
附錄B 附B-1
附錄C 附C-1
參考文獻 References
Alstshuller, A.P., 1993. Production of aldehydes as primary emissions and secondary
atmospheric reactions of alkenes and alkanes during the night and early morning
hours. Atmospheric Environment 27A, 21 − 31.
Arcoumanis, C., Bae, C., Crookes R., 2008. The potential of dimethyl ether (DME) as
an alternative fuel for compression-ignition engines: a review. Fuel 87, 1014 −
1130.
Atkinson, R., Tuazon, E.C., Aschmann, S.M., 1995. Products of the gas-phase
reactions of O3 with alkenes. Environment Science & Technology 29, 1860 −
1866 .
Bakeas, E.B., Argyris, D.I., Siskos, P.A., 2003. Carbonyl compounds in the urban
environment of Athens, Greece. Chemosphere 52, 508 − 813.
Bottenheim, J.W., Barrie, L.A., Atla, E., Heidt, L.E., Niki, H., Rasmussen, R.A.,
Shepson, P.B., 1990. Depletion of flow tropospheric ozone during arctic spring:
the polar sunrise experiment 1988. Journal of Geophysical Research 95, 18555 −
18568.
Brown, W.H., 1997. Introduction to organic chemistry. saunders college publishing,
Harcourt Brace & Company, FL, USA.
Carlier, P., Hannachi, H., Mouvier, G., 1986. The Chemistry of Carbonyl Compounds
in The Atmosphere- A Review. Atmospheric Environment 20, 2079 − 2099.
Carter, W.P.L., 1994. Development of ozone reactivity scales for volatile
organic.compounds. Journal of AWMA. 44, 881 − 899.
Chan, C.C., Nien, C.K., Tsai, C.Y., He,r G.R., 1995. Comparison of tail pipe
emissions from motorcycles and passenger cars. J. Air & Waste Manage . Assoc.
45, 116 − 124.
Cheung, C.S., Zhu, L., Huang, Z., 2009. Regulated and unregulated emissions from a
diesel engine fueled with biodiesel and biodiesel blended with methanol.
Atmospheric Environment 43, 4865 − 4872.
Chmela, F.G., Kapus P.E., 1995. Automotive engines for alternative fuels. Austria:
AVL LIST GmbH.
Cinar, C., Can, O., Sahin, F., Yucesu H.S., 2010. Effects of premixed diethyl ether
(DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine.
Applied Thermal Engineering 30, 360 − 365.
Cipolat, D., 2007. Analysis of energy release and NOX emissions of a CI engine
fuelled on diesel and DME. Applied Thermal Engineering 27, 2095 − 2103.
Collins, J.F., Thomas, D.D., Cocker, K., Norbeck J.M., 2001. The effects of
alternative diesel fuels on the composition of organic gas emissions from Light heavy-duty diesel vehicles. CRC.
Corrêa, S.M., Arbilla, G., 2008. Mercaptans emissions in diesel and biodiesel exhaust.
Atmospheric Environment 42, 6721 − 6725.
Creech, G., Johnson, R.T., Stoffer, J.O., 1982. Part I. a comparison of three different
high pressure liquid chromatography systems for the determination of aldehydes
and ketones in diesel exhaust. Journal of Chromatographic Science 20, 67 − 72.
Crookes, R.J., Bob-Manuel K.D.H., 2007. RME or DME: A preferred alternative fuel
option for future diesel engine operation. Energy Conversion and Management
48, 2971 − 2977.
Edgar, B., Dibble, R.W., Naegeli, D.W., 1997. Autoignition of di-methyl ether and
di-methoxy methane sprays at high pressures. SAE Paper 971677; SAE Trans J
Fuel Lubr 106, 625 − 639.
Falbe, J., Bach, H., 1983. Methodender organishen chemie, band E3, aldehydes. georg
thieme verlag. Stuttgart Germany, 3-13-217304-5.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A.B., Hewitt, N.G., Lamb,
B., Liu, S., Trainer, M., Westberg, H., Zimmermann P., 1992. Emissions of
volatile organic compounds from vegetation and the implication for atmospheric
chemistry. Global Biogeochemical Cycle 6, 389 − 430.
Fessenden, R.J., Fessenden, J.S., Logue, M.W., 1998. Organic chemistry, 6th edition,
brooks/cole publishing company, A Division of International Thomson
Publishing Inc., ISBN: 0-534-35199-9, CA, USA.
Finlayson-Pitts, B.J., Pitts, J.N., 1986. Atmospheric chemistry. John Wiley and Sons.
New York.
Fleisch, T., McCarthy C., Basu A., Udovich C., Charbonneau P., Slodowske W.,
Mikkelsen S.E., McCandless. J., 1995. A new clear diesel technology:
demonstration of ULEV emissions on a Narvistar diesel engine fueled with
dimethyl ether. SAE technical paper series 950061. Warrendale, PA: SAE
International.
Fonseca, D.,2006. DME as alternative diesel fuel: overview. SAE paper
2006-01-2916.
Fontaras, G., Karavalakis, G., Kousoulidou, M., Ntziachristos, L., Bakeas, E.,
Stournas, S., Samaras, Z., 2010. Effects of low concentration biodiesel blends
application on modern passenger cars. Part 2: Impact on carbonyl compound
emissions. Environmental Pollution xxx, 1–8.
Francisco, J.S., 1999. On the competition between hydrogen abstraction versus C–O
bond fission in initiating di-methyl ether combustion. Combus Flame 177, 312 −
316.
Fujita, E.M. and Lu, Z., 1998. Analysis of data from the 1995 NARSTO-Northeast study. Volume III: Chemical mass balance receptor modeling. Draft final report.
Prepared for Coordinating Research Council. Atlanta, GA, Desert Research
Institute, Reno, NV.
Geng, A.C., Chen, Z.L., Siu, G.G., 1992. Determination of low-molecular weight
aldehydes in stack gas and automobile exhaust gas by liquid chromatography.
Analytica Chimica Acta 257, 99 − 104.
Graham, L., 2005. Chemical characterization of emissions from advanced technology
light-duty cehicles. Atm. Environ. 39, 2385 − 2398.
Grosjean, D., Wright, B., 1983. Carbonyls in Urban Fog, Ice Fog, Cloudwater and
Rainwater. Atmospheric Environment 17, 2093.
Grosjean, D.,1982. Formaldehyde and other carbonyls in Los Angeles ambient air.
Environmental Science and Technology 16, 254 − 262.
Grosjean, E., Williams, E.L.II, Grosjean, D., 1993. Ambient levels of formaldehyde
and acetaldehyde in Atlanta, Georgia. Air and Waste 43, 469 − 474.
Guarieiro, L.L N., Souz, A.F., Torres, E.A., Andrade, J.B., 2009. Emission profile of
18 carbonyl compounds, CO, CO2, and NOX emitted by a diesel engine fuelled
with diesel and ternary blends containing diesel, ethanol and biodiesel or
vegetable oils. Atmospheric Environment 43, 2754 − 2761.
Guarieiro, L.L.N., Pereira, P.A.d.P., Torres, E.A., da Rocha, G.O., de Andrade, J.B.,
2008. Carbonyl compounds emitted by a diesel engine fuelled with diesel and
biodiesel-diesel blends: sampling optimization and emissions profile.
Atmospheric Environment 42, 8211 − 8218.
Guo, H., Lee, S.C., Louie, P.K.K., Ho, K.F., 2004. Characterization of hydrocarbons,
halocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere 57,
1363 − 1372.
Hewitt, C.N., Kok, G.L., 1991. Journal of Atmospheric Chemistry 12, 181.
Hoekman, S.K.,1992. Speciated measurements and calculated reactivities of vehicle
exhaust emissions from conventional and reformulated gasoline. Environ. Sci.
Technol. 26, 1206 − 1216.
Huang, Z.H., Ren, Y., Jiang, D.M., Liu, L.X., Zeng, K., Liu, B., Wang, X.B., 2006.
Combustion and emission characteristics of a compression ignition engine
fuelled with diesel-dimethoxy methane blends. Energy Conversion and
Management 47, 1402 − 1415.
IARC, (International Agency for Research on Cancer). http://www.iarc.fr/.
IEA, 2008. World Energy Outlook 2008.
http://www.worldenergyoutlook.org/2008.asp.
Kajitani, S., Chen, Z., Oguma, M., Konno, M., 2001. A study of low-compression-ratio dimethyl ether diesel engines. Int J Engine Research. 3.
Karavalakis G., Boutsika V., Stournas S., Bakeas E., 2011. Biodiesel emissions
profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl,
PAH, nitro-PAH and oxy-PAH emissions. Science of the Total Environment 409,
738 − 747.
Kastings, J.F., Singh, H.B., 1986. Journal of Geophysical Research 91, 13239.
Larsson, P.O., Andersson, A.A. (2000). Oxides of copper, ceria promoted copper,
manganese and copper manganese on Al2O3 for the incineration of CO, ethyl
acetate and ethanol. Applied Catalysis B: Environmental. 24,175.
Lee, S., Oh, S., Choi, Y., 2009. Performance and emission characteristics of an SI
engine operated with DME blended LPG fuel. Fuel 88, 1009 − 1015.
Lemaire J.,1994. Effect of cerium fuel additive on the emissions characteristics of a
heavy-duty diesel engine. SAE Technical Paper Series No. 942067, 189 − 205.
Levy, H., 1971. Normal atmosphere: large radical and formaldehyde concentration
predicted. science 173, 141 − 143.
Li, X., Huang, Zh., 2009. Emission reduction potential of using gas-to-liquid and
dimethyl ether fuels on a turbocharged diesel engine. Science of the total
environment 407, 2234 – 2244.
Liu, J., Liu, S., Li, Y., Wei, Y., Li, G., Zhu Z., 2010. Regulated and nonregulated
emissions from a dimethyl ether powered compression ignition engine. Energy
Fuels 24, 2465 – 2469.
Lowe, D.C., Schmidt, U., 1983. Formaldehyde measurements in the Nonurban
atmosphere. Journal of Geophysical Research 88, 10844 − 10858.
Miller Jothi, N.K., Nagarajan, G., Renganarayanan, S., 2007. Experimental studies on
homogeneous charge CI engine fueled with LPG using DEE as an ignition
enhancer. Renewable Energy 32, 1581 – 1593.
Mitsuharu, O. and Shinichi, G., 2007. Evaluation of Medium Duty DME
TruckPerformance, Field Test Results and PM Characteristics. SAE paper, No.
2007-01-0032.
Montzakz, S.A., Trainer, M., Goldan, P.D., Kuster, W.C., Fehsenfeld, F.C., 1993.
Journal of Geophysical Research 98, 1101.
National Academy Press, 1991. National Academy of Sciences, Rethinking the Ozone
Problem in Urban and Regional Air Pollution. Washington DC.
Ntziachristos, L., Samaras, Z., Pistikopoulos, P., Kyriakis, N., 2000. Statistical
analysis of diesel fuel effects on particle number and mass emissions.
Environmental Science and Technology 34, 5106 − 5114.
Oberdorter PE.,1976. The determination of aldehydes in automobile exhaust. SAE
Paper 760378.
Oguma, M., Goto, S., 2007. Evaluation of medium duty DME truck
performances-field test results and PM characteristics. SAE paper 2007-01-0032.
Osama, M.M., Matar, M.S., Koreish, S.,1993. Effect of methyl tertiary butyl ether
(MTBE) as a gasoline additive on engine performance and exhaust emission.
Fuel Science and Technology International 11, 1331 − 1343.
Pang, X., Mu, Y., 2008. Characteristics of carbonyl compounds in public vehicles of
Beijing city: concentrations, sources, and personal exposures. Atmospheric
Environment 41, 1819 − 1824.
Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen, H., Li, R.,2006. Characteristics of
carbonyl compounds emission froma diesel-engine using biodiesel–ethanol–
diesel as fuel. Atmospheric Environment 40, 7057 − 7065.
Park, S.H., Kim, H.J., Lee, C.S., 2010. Effects of dimethyl-ether (DME) spray
behavior in the cylinder on the combustion and exhaust emissions characteristics
of a high speed diesel engine. Fuel Processing Technology 91, 504 − 513.
Peng, C.Y., Yang, H.H., Lan, C.H., Chien, Sh.M., 2008. Effects of the biodiesel blend
fuel on aldehyde emissions from diesel engine exhaust. Atmospheric
Environment 42, 906 − 915.
Perkins, H.C.,1974. Air Pollution, McGraw-Hill Inc.
Possanzini, M., Dipalo, V., 1995. Determination of olefinic aldehydes other volatile
VOCs in air samples by DNPH-coated cartridges and HPLC. Chromatographia
40, 134 − 138.
Raber, W.H., Moortgat, G.K., 1995. Photooxidation of selected carbonyl compounds
in air: methyl ethyl ketone, methyl vinyl ketone, methacrolein and methylglyxal.
Progress and Problems in Atmospheric Chemistry, Advanced Series in Physical
Chemistry 3, World Scientific Publishing Co. Pte. Ltd., Singapore, 319.
Ren, Y., Huang, Z.H., Jiang, D.M., Liu, L.X., Zeng, K., Liu, B., 2005. Engine
performance and emission characteristics of a compression–ignition engine
fuelled with diesel-dimethoxymethane blends. Proc Ins Mech Eng Part D – J
Automob Eng 219, 905 − 914.
Russell, A., Milford, J., Bergin, M.S., McBride, S., McNair, L., Yang, Y.,Stockwell,
W.R., Croes, B., 1995. Urban ozone control and atmospheric reactivity of
organic gases. Science 269, 491 − 495.
Sauer, A., 2004. Comparison of International Fuel Economy Standards.
http://www.pewclimate.org/docUploads/Fuel%20Economy%20paper%2EChines
e%20final%2E.pdf
Sato, Y., Noda, A., Jun, L., 2001. Effects of fuel injection characteristics on heat
release and emissions in a DI diesel engine operated on DME. SAE Tech paper
2001-01-3634.
Schulamet, P., Newbold, R., Hull, L.A., 1985. Urban and rural ambient air aldehyde
levels in Schenectady, New York and on Whiteface Mountain, New York.
Atmospheric Environment 19, 623 − 626.
Seinfeld, J.H.,1986. Atmospheric chemistry and physics of air pollution. JohnWiley
and Sons Inc., Canada, 58 − 59.
Shuichi, K., 2004. A Study of Low Compression Ratio Diesel Engines Operated with
Neat Dimethyl Ether (DME). JSME TED Newsletter, No.42.
Sorenson, S.C., 2001. Dimethyl ether in diesel engines: progress and perspectives.
ASME Trans. J Eng Gas Turb Power 123, 652 − 658.
Spreen, K.B., Ullman, T.L., Mason, R.L., 1995. Effects of cetane number, aromatics,
and oxygenates on emissions from a 1994 heavy-duty diesel engine with exhaust
catalyst. SAE technical paper, Series 950250.
Suh, H.K., Yoon, S.H., Lee, C.S., 2010. Effect of multiple injection strategies on the
spray atomization and reduction of exhaust emissions in a compression ignition
engine fueled with dimethyl ether (DME). Energy Fuels 24, 1323 − 1332.
Tanner, R.L., Miguel, A., Andrade, J.B., Gaffney, J.S., Streit, G.E., 1988.
Atmospheric chemistry of aldehyde:enhance peroxyacetyl nitrate formation from
ethanol-fueled vehicular emission. Environmental Science and Technology 22,
1026 − 1034.
Teng, H., McCandless, J.C., Schneyer, J.B., 2001. Thermo-chemical characteristics of
di-methyl ether: an alternative fuel for compression-ignition engines. SAE Paper
2001-01-0154; SAE Trans J Fuel Lubr 110, 96 − 106.
Tomin, J., Kent, J., 1982. Proceedings of Fifth International Alcohol. Fuel
Technology Sympium 3, 207 − 214.
US EPA, 2000. http://www.epa.gov/otaq/regs/toxics/f00025.pdf.
US EPA, 2008. The Clean Air Act Amendments of 1990.
US EPA, 2010.
National Toxics Inventory, NTI, 1996. The Projection of Mobile Source Air Toxics
from 1996 to 2007: Emissions and Concentrations.
http://www.epa.gov/otaq/regs/toxics/r01038.pdf.
Vairavamurthy, A., Roberts, J.M., Newman, L., 1992. A review: methods for
determination of low molecular weight carbonyl compounds in the atmosphere.
Atmospheric Environment 26A, 1965 − 1993.
Wang, Y., Zhou L., 2008. Experimental study on exhaust emissions from a
multi-cylinder DME engine operating with EGR and oxidation catalyst. Applied
Thermal Engineering 28, 1589 – 1595.
Wang, Y., He, l., Zhou, L., Li, W., 2010. Effects of DME pilot quantity on the
performance of a DME PCCI-DI engine. Energy Conversion and Management 51, 648 − 654.
Wang, Y., Li, G., Zhu, W. and Zhou, L., 2008. Study on the application of
DME/diesel blends in a diesel engine. Fuel processing technology 89, 1272 –
1280.
Warneck, P., 1988. International Geophysical, Elsevier Inc.
Yao, M., Zheng, Z., Xu, S., Fu, M., 2003. Experimental study on the combustion
process of dimethyl ether (DME). SAE Tech paper, 2003-01-3194.
Yeom, K., Jang, J., Bae, C., 2007. Homogeneous charge compression ignition of LPG
and gasoline using variable valve timing in an engine. Fuel 86, 494 − 503.
Yeom, J.K., Tanaka, T., Senda, J., Fujimoto, H., 2002. The structure analysis of
evaporative diesel spray. SAE Tech paper, 2002-01-0498.
Yuji, O., Shinnosuke, O., Hiroyuki, U., Koutaro, F., 2004. Clean Combustion
Technology in Diesel Engines Operated with Dimethyl Ether. Mitsubishi Heavy
Industries. Ltd, Technical Review, Vol. 40, No.6.
Zhang, B., Fu, W., Gong, J., 2006. Study of fuel consumption when introducing DME
or ethanol into diesel engine. Fuel 85, 778 − 782.
Zhang, J.J., Huang, Z., Wu, J.H., Qiao, X.Q., Fang, J.H, 2008. Combustion and
performance of heavy-duty diesel engines fuelled with dimethyl ether. Proc.
IMechE 222 Part D: J. Automobile Engineering.
Zhou, L., Wang, H., Jiang, D., Huang, Z., 1999. Study of performance and
combustion characteristics of a DME-fueled light-duty direct injection diesel
engine. SAE paper 1999-01-3669.
Zweiding, R.B., Sigsby, J.E., Tejada, Jr. S.B., Stump, F.S., Dropkin, D.L., Ray, W.D.,
1988. Detailed hydrocarbon and aldehyde mobile source emissions from
roadway studies. Environmental Science and Technology 22, 956 − 962.
何文淵,1999,「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,國立成
功大學環境工程研究所,碩士論文。
李彥輝,2009,「柴油機使用二甲醚/柴油混合燃料與廢氣再循環之實驗研究」,
國立海洋大學機械與機電工程研究所,碩士論文。
汪國禎,2001,「汽車學(三)柴油引擎篇」,台南:復文書局。
周家賢,2005,「二甲醚一21世紀清潔燃料」,化工設計,15(2), 14 − 16.
林成原,2001,「天然氣車輛之排氣和性能特性」,能源季刊。
邱雅琪,2004,「以異辛烷為汽油添加劑對機車引擎揮發性有機物及醛酮化合物
排放之影響」,國立成功大學醫學院環境醫學研究所,碩士論文。
翁閎政,1999,「機車排氣之揮發性有機物特徵及光化反應性研究」,國立成功
大學環境工程研究所,碩士論文。
張笙又,2006,「生質柴油燃料比例對引擎排放有機氣態污染物特徵影響研究」,
國立成功大學環境工程研究所,碩士論文。
張發,2005,「談煤基車用燃料及標準的制定」,大眾標準化,(3), 23 − 25.
曹湘洪,2006,「當前我國發展用煤生產車用燃料項目中存在的問題和對策」,
中國能源,28 (2),5 − 9.
陳亭秀、姚東興,2004,「中國大陸二甲醚市場現況」,經濟部技術處ITIS計畫
專欄。
陳厚良,2005,「替代性燃料-汽醇對機車引擎排放特性之研究」,國立屏東科
技大學,碩士論文。
黃柏舜,2008,「柴油引擎發電機使用生質柴油所排放醛酮類化合物及排氣毒性
分析」,國立成功大學環境工程學系,碩士論文。
黃錦宏,2008,「高雄地區大氣中醛酮類化合物濃度時空分佈調查分析」,國立
中山大學環境工程研究所,碩士論文。
黃慶祥、吳中興、朱健松,1999,「二甲醚做為柴油引擎替代燃料對排氣污染影
響之研究」,農業機械學刊,第八卷,第二期。
楊明益,2000,「高屏地區大氣醛酮化合物與臭氧污染事件關聯性」,國立成功
大學環境工程研究所,碩士論文。
經濟部能源局,能源統計手冊,2009。
經濟部能源局,經濟部能源局九十八年年報,2009
經濟部標準檢驗局,http://www.bsmi.gov.tw/wSite/index.jsp。
趙浩然,2000,「多種機動車輛排放醛酮化合物之研究」,國立成功大學環境工
程研究所,博士論文。
劉山豪,2000,「高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解
析」,國立中山大學環境工程研究所,碩士論文。
劉育穎,2001,「機車排放醛酮類化合物特徵與光化反應性研究」,國立成功大
學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code