Responsive image
博碩士論文 etd-0623111-181452 詳細資訊
Title page for etd-0623111-181452
論文名稱
Title
某工業區大氣中揮發性有機物時空特徵調查及臭氧生成潛勢之分析
Spatial and Temporal Characteristics of Volatile Organic Compounds and Ozone Formation Potential in Industrial Park
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
187
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-06-23
關鍵字
Keywords
因子分析、臭氧生成潛勢、最大增量反應性、揮發性有機物、空氣污染物
maximum incremental reactivity, air pollutants, volatile organic compounds, factor analyse, ozone formation potential
統計
Statistics
本論文已被瀏覽 5732 次,被下載 1595
The thesis/dissertation has been browsed 5732 times, has been downloaded 1595 times.
中文摘要
本研究於高雄市某工業區進行空氣污染物及揮發性有機物(Volatile Organic Compounds, VOCs)之採樣,探討污染物濃度於春夏兩季及時段性之時空分布,並以各VOCs物種之最大增量反應性(MIR)推估其臭氧生成潛勢(OFP)及使用因子分析推估其可能污染源。

空氣污染物方面,依季節分布之結果顯示,夏季濃度均較春季低,主要受到濕沉降、光化程度及對流旺盛之因素影響;時段分布之結果顯示,NOx於7:00 − 8:00及18:00 − 19:00出現尖峰值,O3則於13:00 − 16:00出現尖峰值,其NOx及O3因受光化學反應,故逐時濃度成反比,而CO及PM10均與NOx之趨勢相似,可能污染源以移動污染源為主。其中O3與溫度呈正比,與濕度成反比。

VOCs方面,依季節分布之結果顯示,各採樣點於春季主要以2-丁酮、甲苯及正戊烷為主;夏季主要以甲苯、丙酮、間,對-二甲苯及甲基丙烯酸甲酯為主。依組成百分比而言,春季及夏季均以芳香烴類、酮類及烷烴類為主,其中季節性之TVOC濃度:春季(164.6 μg/m3) > 夏季(116.4 μg/m3)。時段分布之結果顯示,其組成百分比分布於上午及傍晚時段均以芳香烴類及酮類為主;夜間時段主要以芳香烴類及烷烴類為主,其中時段性之TVOC濃度:傍晚時段(163.2 ± 62.7 μg/m3) > 夜間時段(159.9 ± 87.4 μg/m3) > 上午時段(98.4 ± 32.3 μg/m3)。統計結果發現,烷烴類及烯烴類於夜間時段濃度較高;酮類及酯類於於傍晚時段濃度較高,芳香烴類則於傍晚及夜間時段濃度較高,可能與傍晚日照強度強、夜間逆溫層發生及風速較低之因素有關。其中TVOC與溫度成正比。

臭氧生成潛勢方面,是以最大增量反應性計算而成,春季之OFP值為566.0 μg-O3/m3,OFP/TVOC約為3.44;夏季之OFP值為629.3 μg-O3/m3,OFP/TVOC約為5.41。其中兩季最高OFP值之種類均為芳香烴類(332.2 μg-O3/m3, 380.3 μg-O3/m3),而最高物種分別為甲苯(138.8 μg-O3/m3)及甲基丙烯酸甲酯(171.7 μg-O3/m3)。

以因子分析法解析VOCs濃度方面,春季之排放貢獻源包括移動污染源、汽油揮發、電子相關產業、冶金業、煉油廠及建築塗料逸散等排放;夏季之排放貢獻源包括移動污染源、汽油揮發、纖維塑膠業、鋼鐵工業及電子相關產業等排放。
Abstract
This study measured Ambient concentrations of air pollutants and Volatile Organic Compounds (VOCs) in industrial park in Kaohsiung City. The spatial distribution was investigated during different time periods and seasons. The ozone formation potential (OFP) of VOCs species were evaluated based on the maximum incremental reactivity (MIR). Also, this study using factor analysis to estimate the polluted source.

The season distribution of air pollutants showed concentration in spring higher than summer, owing to air activities of summer are acute include wet precipitation, photochemical reaction, and convection. The time period distribution showed the results which NOx and O3 concentration occurred peaks at 7:00 − 8:00, 18:00 − 19:00 and 13:00 − 16:00, respectively. The reason is photochemical reaction, lead to concentration trend with time of NOx inversely to O3. The concentration trend with time of CO and PM10 similar to NOx. The polluted sources were estimated mobile. By the way, O3 is proportional to temperature, but it is Inversely proportional to humility.

The seasons distribution of VOCs showed most abundant species included 2-butanone, toluene, and n-pentane in spring, while included toluene, acetone, m,p-xylene, and methyl methacrylate in summer. According to percent composition, most abundant categories in spring and summer were both aromatics, ketones, and alkanes. The TVOC concentration was spring (164.6 μg/m3) higher than summer (116.4 μg/m3). The time periods distribution of VOCs showed most abundant categories included aromatics and ketones in morning and evening, while included aromatics and alkanes in night. The TVOC concentration of evening (163.2 ± 62.7 μg/m3) was highest, followed by night (159.9 ± 87.4 μg/m3), Lowest was morning (98.4 ± 32.3 μg/m3). Results showed alkanes and alkenes own higher concentration in night, ketones and esters in evening, and aromatics in evening and night. The reason is related with sunshine, inversion layer, and lower wind speed. By the way, TVOC is proportional to temperature.

In spring, the OFP was 566.0 μg-O3/m3, OFP/TVOC was 3.44. In summer the OFP was 629.3 μg-O3/m3, OFP/TVOC was 5.41. It was worth mentioning highest OFP categories in spring and summer was both aromatics (332.2 μg-O3/m3, 380.3 μg-O3/m3), and highest OFP species was toluene (138.8 μg-O3/m3) and methyl methacrylate (171.7 μg-O3/m3) , respectively.

The results from factor analyses showed the predominant source included mobile polluted source, petrol evaporation, related electronic industry, metallurgy industry, refinery, and architectural coatings escape in spring. The predominant source included mobile polluted source, petrol evaporation, plastic industry, steel industry, and related electronic industry in summer.
目次 Table of Contents
謝誌............................................................................I
摘要............................................................................II
ABSTRACT................................................................IV
目錄............................................................................VI
表目錄........................................................................IX
圖目錄........................................................................XI
附表目錄....................................................................XII
附圖目錄....................................................................XII

第一章 前言...............................................................1-1
1.1 研究緣起..............................................................1-1
1.2 研究內容..............................................................1-2

第二章 文獻回顧........................................................2-1
2.1 高雄地區之歷年空氣品質概述.............................2-1
2.1.1 高雄地區歷年氣象概述.....................................2-1
2.1.2 空氣污染物種類、特性及來源推估..................2-4
2.1.3 空氣污染指標 (PSI)..........................................2-12
2.2 大氣中揮發性有機物(VOCS)特性.......................2-15
2.2.1 揮發性有機物之管制標準.................................2-16
2.2.2 揮發性有機物之來源及排放特徵......................2-19
2.2.3 移動源之揮發性有機物.....................................2-21
2.2.4 固定源之揮發性有機物.....................................2-25
2.3 揮發性有機物之影響............................................2-28
2.3.1 光化學反應........................................................2-28
2.3.2 光化反應性指標.................................................2-31
2.3.3 揮發性有機物之危害性......................................2-33

第三章 研究方法與流程..............................................3-1
3.1 研究架構................................................................3-1
3.2 採樣規劃................................................................3-2
3.2.1 採樣地理位置......................................................3-2
3.2.2 採樣時程規劃......................................................3-4
3.2.3 採樣監測項目......................................................3-4
3.3 採樣儀器設備與分析方法......................................3-6
3.3.1 周界大氣採樣......................................................3-6
3.3.2 揮發性有機物採樣...............................................3-13
3.4 因子分析法之理論基礎..........................................3-16
3.5 品保及品管作業 (QA/QC)......................................3-18
3.5.1 空白試驗 (Blank Test).........................................3-18
3.5.2 檢量線 (Calibration Curve)..................................3-19
3.5.3 方法偵測極限 (Method Detection Limit, MDL)..3-19
3.5.4 準確度 (Accuracy)...............................................3-20
3.5.5 精密度 (Precision)...............................................3-21

第四章 結果與討論.......................................................4-1
4.1 氣象條件.................................................................4-1
4.2 工業區空氣污染物濃度分析...................................4-4
4.2.1 空氣污染物濃度之季節分布................................4-4
4.2.2 空氣污染物濃度之時段分布................................4-7
4.2.3 空氣污染物濃度與鄰近測站之比較.....................4-11
4.2.4 氣象條件與空氣污染物之相關性.........................4-12
4.3 工業區揮發性有機物濃度分析................................4-14
4.3.1 揮發性有機物濃度之季節分布.............................4-14
4.3.2 揮發性有機物濃度之時段分布.............................4-23
4.3.3 氣象條件與揮發性有機物之相關性......................4-30
4.4 臭氧生成潛勢 (OFP)................................................4-31
4.4.1 季節性之臭氧生成潛勢.........................................4-32
4.4.2 時段性之臭氧生成潛勢.........................................4-36
4.5 大氣中揮發性有機物貢獻來源分析.........................4-41
4.5.1 大氣中揮發性有機物之指紋建立..........................4-41
4.5.2 因子分析結果........................................................4-45

第五章 結論與建議.........................................................5-1
5.1 結論...........................................................................5-1
5.2 建議...........................................................................5-3

參考文獻...........................................................................參-1
附錄A相關氣象因子及風瑰圖...........................................附A-1
附錄B空氣污染物各季節之逐時濃度...............................附B-1
附錄C揮發性有機物之監測濃度......................................附C-1
附錄D最大增量反應性 (MIR)...........................................附D-1
附錄E個人簡歷................................................................附E-1

參考文獻 References
Altenstedt, J., Pleijel, K., 2000. An Alternative Approach to Photochemical Ozone Creation Potentials Applied under European Conditions. Journal of the Air and Waste Management Association 50, 1023 – 1036.
Andersson-Skold, Y., Holmberg, L., 2000. Photochemical Ozone Creation Potentials (POCP) and Replacement of Solvents in Europe. Atmospheric Environment 34, 3159 – 3169.
Badol C., Locoge N., Galloo J.C., 2008. Using a Source-receptor Approach to Characterise VOC Behaviour in a French Urban Area Influenced by Industrial Emissions Part II: Source Contribution Assessment Using the Chemical Mass Balance (CMB) Model. Science of the Total Environment 389, 429 - 440.
Benton, J. Fuhrer, J., Gimeno, B.S., Skarby, L., Palmer-Brown, D., Ball, G., Roadknight, C., Mills, G., 2000. An International Cooperative Programme Indicates the Widespread Occurrence of Ozone Injury on Crops. Agriculture, Ecosystems and Environment 78, 19 – 30.
Blanchard, C.L., 2000. Ozone Process Insights from Field Experiments Part III: Extent of Reaction and Ozone Formation. Atmospheric Environment 34, 2035 - 2043.
Borbon, A., Coddeville, P., Locoge, N., Galloo, J.C., 2004. Characterising Sources and Sinks of Rural VOC in Eastern France. Chemosphere 57, 931 - 942.
Broderick, B.M., Marnane, I.S., 2002. A Comparison of the C2–C9 Hydrocarbon Compositions of Vehicle Fuels and Urban Air in Dublin, Ireland. Atmospheric Environment 36, 975 - 986.
Cai, C., Geng, F., Tie, X., Yu, Q., An, J. 2010. Characteristics and Source Apportionment of VOCs Measured in Shanghai, China. Atmospheric Environment 44, 5005 - 5014.
California Code of Regulations (CCR), California Office of Administrative Law, Section 94700, Title 17, 2010.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Journal of Air and Waste Management Assocication 44, 881 - 899.
Chameides W.L., Demerjian K.L., 2000. An Assessment of Tropospheric Ozone Pollution: A North America Perspective. Palo Alto, California, USA.
Chan, C.C., Lin, S.H., Her, G.R., 1994. Office Worker’s Exposure to Volatile Organic Compounds While Commuting and Working in Taipei City. Atmospheric Environment 28, 2351 - 2359.
Chan, C.C., Ozkaynak, H., Spengler, J.D., Sheldon, L., 1991. Driver Exposure to Volatile Organic Compounds, CO, Ozone and NO2 Under Different Driving Conditions. Environmental Science and Technology 25, 964 - 972.
Chan, C.Y., Chan, L.Y., Wang, X.M., Liu, Y.M., Lee, S.C., Zou, S.C., Sheng, G.Y., Fu, J.M., 2002. Volatile Organic Compounds in Roadside Microenvironments of Metropolitan Hong Kong. Atmospheric Environment 36, 2039 - 2047.
Chang J., 1999. The Relationship of Visibility with Physical and Chemical Characteristics of Suspended Particles in Kaohsiung City. Master Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan.
Chang, C.C., Sree, U., Lin, Y.S., Lo, J.G., 2005. An Examination of 7:00 – 9:00 PM Ambient Air Volatile Organics in Different Seasons of Kaohsiung City, Southern Taiwan. Atmospheric Environment 39, 867 - 884.
Cheng, H.R., Guo, H., Saunders, S.M., Lam, S.H.M., Jiang, F., Wang, X.M., Simpson, I.J., Blake, D.R., Louie, P.K.K., Wang, T.J., 2010. Assessing Photochemical Ozone Formation in the Pearl River Delta with a Photochemical Trajectory model. Atmospheric Environment 44, 4199 – 4208.
Chiang H.L., Tsai J.H., Chen S.Y., Lin K.H., Ma S.Y., 2007. VOC Concentration Profiles in an Ozone Non-attainment Area: A Case Study in an Urban and Industrial Complex Metroplex in Southern Taiwan. Atmospheric Environment 41, 1848 - 1860.
Chiang, H.L., Tsai, J.H., Chen, S.Y., Lin, K.H., Ma, S.Y., 2007. VOC Concentration Profiles in an Ozone Non-attainment Area: A Case Study in an Urban and Industrial Complex Metroplex in Southern Taiwan. Atmospheric Environment 41, 1848 – 1860.
Chou C.C.K., Liu, S.C., Lin, C.Y., Shiu, C.J., Chang, K.H., 2006. The Trend of Surface Ozone in Taipei, Taiwan, and Its Causes: Implications for Ozone Control Strategies. Atmospheric Environment 40, 3898 – 3908.
Derwent, R.G., Jenkin, M.E., 1991. Hydrocarbons and the Long-range Transport of Ozone and Pan across Europe. Atmospheric Environment 25, 1661 – 1678.
Derwent, R.G., Jenkin, M.E., Passant, N.R., Pilling, M.J., 2007. Reactivity-based Strategies for Photochemical Ozone Control in Europ. Environmental Secience & Policy 10, 445 - 453.
Derwent, R.G., Jenkin, M.E., Saunders, S.M., Pilling, M.J., 1998. Photochemical Ozone Creation Potentials for Organic Compounds in Northwest Europe Calculated with a Master Chemical Mechanism. Atmospheric Environment 32, 2429 – 2441.
Dockery, D.W., Pope, C.A., 1994. Acute Respiratory Effects of Particulate Air Pollution. Annu Rev Public Health 15. 32 - 107.
Dodge, M.C., 2000. Chemical Oxidant Mechanisms for Air Quality Modeling: Critical Review. Atmospheric Environment 34, 2103 - 2130.
Finlayson-Pitts, B.J., James, N. Pitts, Jr., 2000. Applications of Atmospheric Chemistry: Air Pollution Control Strategies and Risk Assessments for Tropospheric Ozone and Associated Photochemical Oxidants, Acids, Particles, and Hazardous Air Pollutant.Chemistry of the Upper and Lower Atmosphere, 871 – 942.
Friedrich, R., Obermeier, A., 1999. Anthropogenic Emissions of Volatile Organic Compounds. Reactive Hydrocarbons in the Atmosphere, 1 - 39.
Gertler, A.W., Fujita, E.M., Pierson, W.R., Wittorff, D.N., 1996. Apportionment of NMHC Tailpipe vs. Non-tailpipe Emissions in the Fort McHenry and Tuscarora Mountain Tunnels. Atmospheric Environment 30, 2297 - 2305.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., Fall, R., 2000. Natural Emissions of Non-methane Volatile Organic Compounds, Carbon Monoxide, and Oxides of Nitrogen from North America. Atmospheric Environment 34, 2205 – 2230.
Hagerman, M.L., Aneja, P.V., Lonneman, A.W., 1997. Characterization of Non-methane Hydrocarbons in the Rural Southeast United States. Atmospheric Environment 31, 4017 - 4038.
Hamdy, ElminirK.,Hamid, R.H., El-Hussainy, F.,Ghitas, Ahmed E., Beheary,M.M., Abdel-Moneim, Khaled M., 2006. The Relative Influence of the Anthropogenic Air Pollutants on the Atmospheric Turbidity Factors Measured at an Urban Monitoring Station. Science of the Total Environment 368, 732 - 743.
Han, X., Naeher, L.P., 2006. A review of traffic-related air pollution exposure assessment studies in the developing world. Environment International 32, 106 – 120.
Hansen, A.B., Palmgren, F. 1996. VOC Air Pollutants in Copenhagen. Science of The Total Environment, 189 - 190, 451 - 457.
Health Effects Notebook for Hazardous Air Pollutants. US Environmental Protection Agency, Technology Transfer Network Air Toxics Web Site. http://www.epa.gov/ttn/atw/hlthef/hapindex.html
Hettelingh, J.P., Sverdrup, H., Zhao, D., 1995. Deriving Critical Loads for Asia. Water, Air and Soil Pollution 85, 2565 - 2570.
Hidy, G.M., 2000. Ozone Process Insights from Field Experiments Part I: Overview. Atmospheric Environment 34, 2001 - 2022.
Inomata, Y., Iwasaka, Y., Osada, K., Hayashi, M., Mori, I., Kido, M., Hara, K., Sakai, T., 2006. Vertical Distributions of Particles and Sulfur Gases (Volatile Sulfur Compounds and SO2) over East Asia: Comparison with Two Aircraft-borne Measurements Under the Asian Continental Outflow in Spring and Winter. Atmospheric Environment 40, 430 - 444.
Intergovernmental Panel on Climate Change (IPCC): Climate Change, 2001. The Scientific Basis. Cambridge University Press, New York, USA.
Jaegle, L., Jacob, D.J., Wang, Y., Weinheimer, A.J., Ridley, B.A., Campos, T.L., Sachse, G.W., Hagen, D., 1998. Origin of NO in the Upper Troposphere over the Central United States. Geophys. Res. Lett. 25 (10), 1705 – 1708.
Jo, W.K., Song, K.B., 2001. Exposure to Volatile Organic Compounds for Individuals with Occupations Associated with Potential Exposure to Motor Vehicle Exhaust and_or Gasoline Vapor Emissions. The Science of The Total Environment 269, 25 - 37.
Kao, A.S., 1994. Formation and Removal Reactions of Hazardous Air Pollutants. Journal of the Air & Waste Management Association 44, 683 - 696.
Keymeulen, R., Gorgenyi, M., Heberger, K., Priksane, A., Van Langenhove, H., 2001. Benzene Toluene, Ethyl Benzene and Xylenes in Ambient Air and Pinus Sylvestris L. Needles: A Comparative Study between Belgium, Hungary and Latvia. Atmospheric Environment 35, 6327 - 6335.
Kleinman, L.I., 2000. Ozone Process Insights from Field Experiments Part II: Observation-based Analysis for Ozone Production. Atmospheric Environment 34, 2023 - 2033.
Kley, D., Kleinmann, M., Sanderman, H., Krupa, S.,1999. Photochemical Oxidants: State of the Science. Environmental Pollution 100, 19 – 42.
Kuo, H.W., Wei, H.C., Liu, C.S., Lo, Y.Y., 2000. Exposure to Volatile Organic Compounds While Commuting in Taichung Taiwan. Atmospheric Environment 34, 3331 - 3336.
Kwangsam N., Kil-Choo M., Yong P.K., 2005. Source Contribution to Aromatic VOC Concentration and Ozone Formation Potential in the Atmosphere of Seoul. Atmospheric Environment 39, 5517 - 5524.
Lai, C.H., Chen, K.S., Ho, Y.T., Chou, M.S., 2004. Characteristics of C2-C5 Hydrocarbons in the Air of Urban Kaohsiung, Taiwan. Atmospheric Environment 38, 1997 - 2011.
Maroni, M., Seifert, B., Lindvall, T., 1995. Indoor Air Quality – A Comprehensive Reference Book, Elsevier, Amsetrdam.
Na, K., Kim, Y.P., Moon, I., Moon, K.C., 2004. Chemical Composition of Major VOC Emission Sources in the Seoul Atmosphere. Chemosphere 55, 585 - 594.
Na, K., Moon, K.C., Kim, Y.P., 2005. Source Contribution to Aromatic VOC Concentration and Ozone Formation Potential in the Atmosphere of Seoul. Atmospheric Environment 39, 5517 - 5524.
Penkett, S.A., Blake, N.J., Lightman, P., Marsh, A.R.W., Anwyl, P., Butcher, G., 1993. TheSeasonal Variation of Non-methane Hydrocarbons in the Free Troposphere over the North Atlantic Ocean: Possible Evidence for Extensive Reaction of Hydrocarbons with the Nitrate Radical. Journal of Geophysical Research 98 , 2865 - 2885.
Pennequin-Cardinal, A., Plaisance, H., Locoge, N., Ramalho, O., Kirchner, S., Galloo, J.C., 2005. Performances of the Radiellos Diffusive Sampler for BTEX Measurements: Influence of Environmental Conditions and Determination of Modelled Sampling Rates. Atmospheric Environment 39, 2535 - 2544.
Placet, M., Mann, C.O., Gilbert, R.O., Niefer, M.J., 2000. Emissions of Ozone Precursors from Stationary Sources: A Critical Review. Atmospheric Environment 34, 2183 – 2204.
Riga-Karandinos, A.N., Saitanis, C., 2005. Comparative Assessment of Ambient Air Quality in Two Typical Mediterranean Coastal Cities in Greece. Chemosphere 59, 1125 – 1136.
Roukos, J., Riffault, V., Locoge, N., Plaisance, H., 2005. VOC in an Urban and Industrial Harbor on the French North Sea Coast during Two Contrasted Meteorological Situations. Environmental Pollution 157, 3001 - 3009.
Sagebiel, J.C., Zielinska, B., Pierson, W.R., Gertler, A.W., 1996. Real-world Emissions and Calculated Reactivities of Organic Species from Motor Vehicles. Atmospheric Environment 30, 2287 - 2296.
Scheff, P.A., Wadden, R.A., 1993. Receptor Modeling of Volatile Organic Compounds. 1. Emission Inventory and Validation. Environmental Science and Technology 27, 617 - 625.
Sillman, S., 1999. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted rural Environments. Atmospheric Environment 33, 1821 - 1845.
Smith, D.L., Gary, F.E., Thomas, A.L., 1992. Measurement of VOCs from TMAS Network. Journal of the Air & Waste Management Association 42, Vol. 42, No. 10, 1319 - 1323
Syri, S., Amann, M., Schopp, W., Heyes, C., 2001. Estimating Long-term Population Exposure to Ozone in Urban Areas of Europe. Environmental Pollution 113, 59 – 69.
Tsai, P.J., Lee, C.C., Chen, M.R., Shih, T.S., Lai, C.H., Liouc, S.H., 2002. Predicting the Contents of BTEX and MTBE for the Three Types of Tollbooth at a Highway Toll Station via the Direct and Indirect Approaches. Atmospheric Environment 36, 5961 - 5969.
Tsai, Y.I., Cheng, M.T., 1999. Visibility and Aerosol Chemical Compositions Near the Coastal Area in Central Taiwan. Science of the Total Environment 231, 37 - 51.
Vega, E., Mugica, V., Carmona, R.,Valencia, E., 2000. Hydrocarbon Source Apportionment in Mexico City using the Mass Balance Receptor Model. Atmospheric Environment 34, 4121 - 4129.
Wadden, R.A., Scheff, P.A., 1994. Receptor Modeling of VOCs — II. Development of VOC Control Functions for Ambient Ozone. Atmospheric Environment 28, 2507 - 2521.
Watson, J.G., Chow, J.C., Fujita, E.M., 2001. Review of Volatile Organic Compound Source Apportionment by Chemical Mass Balance. Atmospheric Environment 35, 1567 - 1584.
毒理資料庫,行政院環境保護署毒管處。
http://flora2.epa.gov.tw/toxicweb/toxicuc4/database.asp
內政部統計處諮詢服務網。http://www.moi.gov.tw/stat/
賴嘉祥,2004,「高雄市大氣中C2 - C15揮發性有機物特徵之時空分佈及受體模式之分析」,博士論文,國立中山大學環境工程研究所。
李宗霖,2003,「夜間混合層以上氣態污染物對日間光化反應所造成的影響」,碩士論文,國立成功大學環境工程研究所。
劉鎧銘,2008,「嘉義地區揮發性有機物來源及其臭氧生成潛勢」,碩士論文,國立成功大學環境工程學系碩博士。
劉家良,2008,「台北都會鄰近區域大氣環境中揮發性有機物之特性研究」碩士論文,輔英科技大學環境工程與科學系碩士班。
羅俊光,2000,「半導體業作業環境空氣中揮發性有機霧氣相層析質譜儀分析方法」,行政院勞工委員會勞工安全衛生研究所研究報告。
羅俊光、吳劍侯,2003,「工業園區特殊空氣污染物成分調查、分析技術研究」,清華大學原子科學系。
羅卓卿,2001,「油品儲運站鄰近空氣中揮發性有機污染物之特性研究」,碩士論文,國立中山大學環境工程研究所。
高雄地區月平均局屬測站氣象資料 (民國89年至98年),大氣研究資料庫(Data Bank for Atmospheric Research, DBAR)。
http://stdank.as.ntu.edu.tw/
黃冠儒,2008,「都會區機車騎士空氣污染物暴露評估研究」,碩士論文,朝陽科技大學環境工程與管理系碩士班。
黃靜儀,2008,「以模場蛇木屑生物濾床處理溶劑工廠排放中揮發性有機物之操作性能研究」,碩士論文,國立中山大學環境工程研究所。
黃思蒨,2007,「運用受體模式與軌跡模式探討揮發性有機物之貢獻與傳輸」,碩士論文,逢甲大學環境工程與科學學系。
洪崇軒、洪佑良、周慶隆、錢志桓、謝岱紘、賴瑞明、許瓊元,2004「石化工業揮發性空氣污染物暴露評估」,環保署/國科會空污防制科研合作計畫期末報告,國立高雄第一科技大學環境與安全衛生工程系。
邱顯文,2007,雪山隧道揮發性有機物排放特性分析,碩士論文,國立聯合大學環境與安全衛生工程學系碩士班。
行政院勞工委員會,2003,「勞工作業環境空氣中有害物容許濃度標準」。
行政院環境保護署,2009,「車用汽柴油成分管制標準」。
行政院環境保護署/空氣品質保護規劃/空氣品質模式支援中心/TEDS 7.0, 2009。http://air.epa.gov.tw/Public/Main.aspx
行政院環境保護署/空氣品質監測網。
http://taqm.epa.gov.tw/taqm/zh-tw/default.aspx
行政院環境保護署空氣品質保護及噪音管制處,2008,「避免使用含揮發性有機物之消費性產品,就是保護地球」。
周忠義,2002,「室外空氣中揮發性有機物之毒性探討」,碩士論文,國立成功大學環境工程學系碩博士班。
詹秉昊,2006,高污染空品區通勤族群有害空氣污染物暴露特性之研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程系。
張簡國平,1999,「高雄市轄區揮發性有機化合物(VOC)分析方法建立及來源調查」,高雄市環保局。
張翼書、尤建華,2008,「科技園區大氣環境揮發性有機化合物特性特討」,中華民國環境工程學會2008空氣污染控制技術研討會論文集。
陳立偉,2007,「加油站揮發性有機物逸散特性研究」,碩士論文,國立聯合大學環境與安全衛生工程學系碩士班。
陳清涼,2005,「空氣中VOC分析及其在石化廠的應用」,博士論文,雲林科技大學工程科技研究所博士班。
陳順予,2000,「多變量分析」二版,華泰書局。
吳立言,2002,「高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討」,碩士論文,國立中山大學環境工程研究所。

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code