Responsive image
博碩士論文 etd-0623111-181526 詳細資訊
Title page for etd-0623111-181526
論文名稱
Title
添加氫氧氣為替代燃料對柴油引擎排放醛酮類化合物減量與節能效益之研究
Saving Energy and Reducing Carbonyl Compounds Emissions using H2/O2 Alternative Fuel on a Heavy-Duty Diesel Engine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-06-23
關鍵字
Keywords
節能效益、排放因子、醛酮類化合物、氫氧氣、柴油引擎
Energy Conservation, H2/O2, Emission Factor, Diesel Engine, Carbonyls
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
本研究於柴油引擎以純柴油與添加不同H2/O2進氣量(10至70 L/min)於穩態條件下測試,對於引擎所排放之9種Carbonyls進行採樣與分析,探討柴油引擎排放Carbonyls特徵之研究,以利瞭解柴油引擎污染物排放之整體變化趨勢,並評估添加氫氧氣之節能效益。

柴油引擎以純柴油與添加不同H2/O2進氣量(10至70 L/min)之THC、CO、CO2及PM排放濃度皆都隨H2/O2進氣量增加而呈現下降趨勢;反之,NOx排放濃度卻隨H2/O2進氣量增加而呈現上升趨勢。

柴油引擎以純柴油之Total carbonyls排放濃度為3218.02 μg/m3、排放因子分別為242.46 mg/kWh與793.77 mg/L-fuel,添加H2/O2進氣量10至70 L/min時,其排放濃度分別為3068.28、3006.42、2823.10、2707.06、2500.54、2216.87及2178.27 mg/m3;排放因子可分為千瓦小時 (mg/kWh)與單位油耗 (mg/L-fuel)兩種,mg/kWh分別為231.36、226.18、211.41、203.14、186.98、167.17及164.23 mg/kWh,mg/L-fuel則分別為764.95、755.15、719.97、707.36、704.40、694.27及690.47 mg/L-fuel;添加H2/O2能有效降低引擎所排放之Total carbonyls,其排放減量分別為4.7、6.6、12.3、15.9、22.3、31.1及32.3%。

評估添加氫氧氣之節能效益,引擎耗油之柴油當量與氫氧機耗電之柴油當量加總,整體之柴油當量分別為2.51、2.58、2.59、2.57、2.60、2.43、2.26及2.25,添加H2/O2進氣量為50 L/min、60 L/min及70 L/min之節能效益分別為3.4%、10.0%及10.6%,可知H2/O2進氣量為60 L/min節能效益最為顯著,故有最佳之節能效益。
Abstract
This research carries out all tests in diesel engine takes neat diesel and hydrogen+oxygen (H2/O2) which is used as an additive (H2/O2 mixture: 10 to 70 L/min, interval 10 L/min) in a stable state condition (engine was operated at one load steady-state condition of 1600 rpm with torque and power outputs of 145 Nm and 24.5 kW, respectively). Characteristics of carbonyls emissions from H2/O2 as an additive were investigated in a HDDE (heavy-duty diesel engine) and compared with those from neat diesel, contains the concentration, emission factor and elimination efficiency, whole of change tendency in order to help the understanding of diesel engine pollutant emissions, and appraises energy conservation of benefit which add to H2/O2.

The regulated pollutants emission, using H2/O2 mixture (10 to 70 L/min), THC, CO, CO2 and PM emission all increased while H2/O2 showed signs of decrease; on the contrary, NOx emission increased while H2/O2 increased.

Regarding Carbonyls emissions, the total carbonyls concentration of diesel engine take neat diesel was 3218.02 μg/m3 and the emission factors for diesel engine take neat diesel were 180.882 mg/bhp-hr and 788.061 mg/L-fuel, respectively. When H2/O2 mixture was added, total carbonyls concentration of 3068.28, 3006.42, 2823.10, 2707.06, 2500.54, 2216.87 and 2178.27 mg/m3 were 10 L/min, 20 L/min, 30 L/min, 40 L/min, 50 L/min, 60 L/min and 70 L/min, respectively. The emission factor may be divided into mg/bhp-hr and mg/L-fuel; the emission factor of total carbonyls were 231.36、226.18、211.41、203.14、186.98、167.17 and 164.23 mg/bhp-hr, respectively; the emission factor of total carbonyls were 764.95、755.15、719.97、707.36、704.40、694.27 and 690.47 mg/L-fuel, respectively. Increases in H2/O2 can reduce total carbonyls emissions with an eliminating efficiency rate of 4.7, 6.6, 12.3, 15.9, 22.3, 31.1 and 32.3%, respectively.

Energy conservation of appraisal increase H2/O2, diesel equivalent sun of fuel consumption of diesel engine and electricity consumption of H2/O2 generator, namely can distinguish that its energy consumption, whole consumes were 2.51, 2.58, 2.59, 2.57, 2.60, 2.43, 2.26 and 2.25, respectively. When compared with neat diesel, result showed in H2/O2 from 10 L/min to 40 L/min, diesel equivalent increased while H2/O2 showed increase; but in H2/O2 from 50 L/min to 70 L/min reflected in a gradual decrease in diesel equivalent, indicating that increases in H2/O2 can effectively achieve energy conservation. The result showed that energy conservation was 3.4%, 10.0% and 10.6% for 50 L/min, 60 L/min and 70 L/min, respectively. The result indicated H2/O2 was 60 L/min when energy conservation benefit was most remarkable, therefore this had the best energy conservation.
目次 Table of Contents
謝誌.....................................................................................I
摘要.....................................................................................II
ABSTRACT........................................................................III
目錄....................................................................................VI
表目錄................................................................................IX
圖目錄............................................................................... XI

第一章 前言......................................................................1-1
1.1 研究緣起....................................................................1-1
1.2 研究目標....................................................................1-3

第二章 文獻回顧..........................................2-1
2.1 醛酮類化合物............................................................2-1
2.1.1 醛酮類化合物的性質.............................................2-1
2.1.2 醛酮類化合物之來源與生成.................................2-3
2.1.3 醛酮類化合物及其前驅物致臭氧生成特性.........2-4
2.1.4 醛酮類化合物之分佈特性.....................................2-5
2.1.5 醛酮類化合物之健康危害.....................................2-6
2.2 柴油引擎及排放特徵................................................2-10
2.2.1 柴油引擎之作用原理.............................................2-10
2.2.2 影響柴油引擎污染排放之因素.............................2-11
2.2.3 傳統污染物之排放特徵及健康危害性.................2-14
2.2.4 醛酮化合物之排放特徵.........................................2-18
2.3 替代能源....................................................................2-19
2.3.1 氫氣的基本性質.....................................................2-20
2.3.2 氫能與氫內燃機的應用及污染物排放特性.........2-23
2.3.3 不同替代燃料燃燒時污染物排放之特性.............2-29
2.3.4 各不同替代燃料之比較.........................................2-36

第三章 研究方法與步驟.................................................3-1
3.1 研究架構與流程........................................................3-1
3.2 實驗規劃....................................................................3-2
3.2.1 添加氫氧氣進氣量之比例.....................................3-2
3.2.2 採樣規劃.................................................................3-2
3.3 採樣設備....................................................................3-6
3.3.1 柴油引擎規格.........................................................3-6
3.3.2 氫氧機.....................................................................3-6
3.3.3 電表.........................................................................3-8
3.3.4 Carbonyls採樣方法與設備..................................3-8
3.4 採樣程序....................................................................3-10
3.4.1 柴油系統.................................................................3-10
3.4.2 傳統污染物量測.....................................................3-11
3.4.3 Carbonyls採樣......................................................3-13
3.5 樣品分析....................................................................3-14
3.6 分析設備及程序........................................................3-14
3.7 Carbonyls分析之品質保證與品質控制.................3-15
3.7.1 空白試驗.................................................................3-15
3.7.2 方法偵測極限(Method Detection Limit, MDL)..3-16
3.7.3 檢量線(Calibration curve)之配置.......................3-16
3.7.4 準確度(Accuracy)..................................................3-17
3.7.5 精密度(Precision).................................................3-18

第四章 結果與討論..........................................................4-1
4.1 柴油引擎以純柴油與添加不同H2/O2進氣量對於引擎性能之影響.......................................................................4-1
4.1.1 制動熱效率.............................................................4-1
4.1.2 制動單位燃料消耗率.............................................4-3
4.1.3 制動單位能量消耗率.............................................4-5
4.1.4 空燃比.....................................................................4-7
4.2 柴油引擎以純柴油與添加不同H2/O2進氣量對於傳統污染物之排放特徵...........................................................4-8
4.2.1碳氫化合物(THC)...................................................4-9
4.2.2 氮氧化物(NOx)......................................................4-11
4.2.3 一氧化碳(CO)........................................................4-12
4.2.4 二氧化碳(CO2)......................................................4-14
4.2.5 懸浮微粒(PM)........................................................4-16
4.3柴油引擎以純柴油與添加不同比例H2/O2對於Carbonyls之排放特徵...................................................4-17
4.3.1 Total Carbonyls之排放濃度與排放減量...........4-18
4.3.2 Total Carbonyls之排放因子...............................4-20
4.3.3 Total Carbonyls之組成分析...............................4-24
4.4 節能效益...................................................................4-42

第五章 結論與建議.........................................................5-1
5.1 結論...........................................................................5-1
5.2 建議...........................................................................5-3

參考文獻.........................................................................參-1
附錄A 作者簡歷..............................................................附A-1
參考文獻 References
Abdel-Rahman, A.A., Osman, M.M., 1997. Experimental Investigation on Varying the Compression Ratio of SI Engine Working Under Different Ethanol-Gasoline Fuel Blends. International Journal of Energy Research 21, 31 − 40.
Alstshuller, A.P., 1993. Production of Aldehydes as Primary Emissions and Secondary Atmospheric Reactions of Alkenes and Alkanes During the Night and Early Morning Hours. Atmospheric Environment 27A, 21 − 31.
Atkinson, R., Tuazon, E.C., Aschmann, S.M., 1995. Products of the Gas-Phase Reactions of O3 with Alkenes. Environment Science & Technology 29, 1860 − 1866 .
Bailey, R.A., Clark, H.M., Krause, S., Strong, R.L., 1978. Atmospheric Press, New York.
Balagurunathan, K., Nedunchezian, N., Rao, P.S., Ganesan, V., 1994. Control of NOx and Smoke in a Direct Injection Diesel Engine Using Methanol Diesel Emulsion as Fuel.
Bari, S., Esmaeil, M.M., 2010. Effect of H2/O2 Addition in Increasing the Thermal Efficiency of a Diesel Engine. Fuel 89, 378 − 383.
Basic Considerations for Safety of Hydrogen System, 2001. Technigue Report, ISO/PDTR 15916.
Boggs, David, L., 1997. A Small-Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles. 1997 SAE Future Transportation Technology Conference; Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, USA, 972680.
Bottenheim, J.W., Barrie, L.A., Atlas, E., Heidt, L.E., Niki, H., Rasmussen, R.A., Shepson P.B., 1990. Depletion of Flow Tropospheric Ozone During Arctic Spring: The Polar Sunrise Experiment 1988. Journal of Geophysical Research 95, 18555 − 18568.
Brown, W.H., 1997. Introduction to Organic Chemistry. Saunders College Publishing, Harcourt Brace & Company, FL, USA.
Bunger, J., Muller, M., Krahl, J., Baum, K., Weigel, A., Haillier, E., Schulz, T.G., 2000. Mutagenicity of Diesel Exhaust Particles from Two Fossil and Two Plant Oil Fuels. Mutagenesis 15, 391 − 397.
Canadian Hydrogen Energy Company, 2005. The Hydrogen Injection System, http://www.globaltech.ca/tehisyst.htw.
Carlier, P., Hannachi, H., Mouvier, G., 1986. The Chemistry of Carbonyl Compounds in The Atmosphere- A Review. Atmospheric Environment 20, 2079 − 2099.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Journal of the Air & Waste Management Association 44, 881 − 899.
Carter, W.P.L., Pierce, J.A., Luo, D., Malkina, I.L., 1995. Environmental Chanmber Study of Maximum Incremental Reactivities of Volatile Organic Compounds. Atmospheric Environment 29, 2499 − 2511.
Chao, M.R., Lin, T.C., Chao, H.R., Chang, F.H., Chen, C.B., 2001. Effects of Methanol-Containing Additive on Emission Characteristics from a Heavy-Duty Diesel Engine. The Science of Total Environmental 279, 167 − 179.
Chiang, T.A., Wu, P.F., Wang, L.F., Lee, C.H., Ko, Y.C., 1997. Mutagenicity and Polycyclic Aromatic Hydrocarbon Content of Fumes from Heatedcooking Oils Produced in Taiwan. Mutation Research 381, 157 − 161.
Clean Air Amendments of 1990, PL 101 − 549, Sections 203, Emission Standards for Conventional Motor Vehicles. Sections 243, Standards for Light-Duty Clean Fuel Vehicles.
College of the Desert, 2001. Hydrogen Use in Internal Combustion Engines.
Correa, S., Machado, Graciela, A, 2008. Carbonyl Emissions in Diesel and Biodiesel Exhaust. Atmospheric Environment 42, 769 − 775.
Creech, G., Johnson, R.T., Stoffer, J.O., 1982. Part I: A Comparison of Three Different High Pressure Liquid Chromatography Systems for the Determination of Aldehydes and Ketones in Diesel Exhaust. Journal of Chromatographic Science 20, 67 − 72.
Denver 州政府環保局持續置2010年替代燃料計畫,http://www.denvergov.org/SustainableInitiatives/tabid/386886/Default.aspx
Falbe, J., Bach, H., 1983. Methodender Organishen Chemie, Band E3, Aldehydes. Georg Thieme Verlag, ISBN: 3-13-217304-5, Stuttgart Germany.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A.B., Hewitt, N.G., Lamb, B., Liu, S., Trainer, M., Westberg, H., Zimmermann P., 1992. Emissions of Volatile Organic Compounds from Vegetation and the Implication for Atmospheric Chemistry. Global Biogeochemical Cycle 6, 389 − 430.
Feng, Y., Wen, S., Chen, Y., Wang, X., Lu, H., Bi, X., Sheng, G., Fu, J., 2005. Ambient Levels of Carbonyl Compounds and Their Sources in Guangzhou, China. Atmospheric Environment 39, 1789 − 1800.
Fessenden, R.J., Fessenden, J.S., Logue, M.W., 1998. Organic Chemistry, 6th Edition, Brooks/Cole Publishing Company, A Division of International Thomson Publishing Inc., ISBN: 0-534-35199-9, CA, USA.
Finlayson-Pitts, B.J., Pitts, J.N., 1986. Atmospheric chemistry. John Wiley and Sons. New York.
Foute, 1999. For More Information on Hythane. Tithe Denver Hythane Project – Update, Third NHA meeting, 5-21-5-33.
Gabele, P., 1997. Exhaust Emission from Four Stroke Lawn Mower Engine. Journal of the Air & Waste Management Association 47, 945 − 952.
Geng, A.C., Chen, Z.L., Siu G.G., 1992. Determination of Low-Molecular Weight in Aldehydes in Stack Gas and Automobile Exhaust Gas by Liquid Chromatography. Analytica Chimica Acta 257, 94 − 104.
Graham, L., 2005. Chemical Characterization of Emissions from Advanced Technology Light-Duty Vehicles. Atmospheric Environment 39, 2385 − 2398.
Granby, K., Christensen, C.S., Lohse, C., 1997. Urban and Semi-rural Observations of Carboxylic Acids and Carbonyls. Atmospheric Environment 31, 1403 − 1415.
Grosjean, E., Williams, E.L.II, Grosjean, D., 1993. Ambient Levels of Formaldehyde and Acetaldehyde in Atlanta, Georgia. Air and Waste 43, 469 − 474.
He, B.Q., Shuai, S.J., Wang, J.X., He, H., 2003b. The Effect of Ethanol Blended Diesel Fuels on Emissions from a Diesel Engine. Atmospheric Environment 37, 4962 − 4971.
He, B.Q., Wang, J.X., Hao, J.M., Yan, X.G., Xiao, J.H., 2003. A Study on Emission Characteristics of an EFI Engine with Ethanol Blended Gasoline Fuels. Atmospheric Environment 37, 949 − 957.
Hewitt, C.N., Kok, G.L., 1991. Journal of Atmospheric Chemistry 12, 181.
Heywood, J.B., 1988. Internal Combustion Engine Fundamentals. New York: McGraw-Hill Book Company.
Heywood, J.B., Tabacyzinski, R.J., 1976. Current Developments in Spark-Ignition Engines. In a History of the Automotive International Combustion Engine, SAE Publication 409.
Ho, K.F., Lee, S.C., Chiu, G.M.Y., 2002. Characterization of Selected Volatile Organic Compounds, Polycyclic Aromatic Hydrocarbons and Carbonyl Compounds at a Roadside Monitoring Station. Atmospheric Environment 36, 57 − 65.
IARC, (International Agency for Research on Cancer). http://www.iarc.fr/.
Kastings, J.F., Singh, H.B., 1986. Journal of Geophysical Research 91, 13239.
Kawahara, E.T.N., Piao, Z., Fujita, S., 2001. Hydrogen Combustion and Exhaust Emissions Ignited with Diesel Oil in a Dual Fuel Engine. SAE paper 2001-01-3503.
Kim, K.H., Hong, Y.J., Raktim, Pal., Jeon E.C., Koo, Y.S., 2008. Investigation of Carbonyl Compounds in Air from Various Industrial Emission Sources. Chemosphere 70, 807 − 820.
Kuo, L., Shih, L., 1998. Comparison of the Effect of Various Additives Fuel on the Diesel Engine Emissions. SAE Paper 982573.
Lemaire, J., 1994. Effect of Cerium Fuel Additive on the Emissions Characteristics of a Heavy-Duty Diesel Engine. SAE Technical Paper Series 942067.
Levy, H., 1971. Normal Atmosphere: Large Radical and Formaldehyde Concentration Predicted. Science 173, 141 − 143.
Lowe, D.C., Schmidt, U., 1983. Formaldehyde Measurements in the Nonurban Atmosphere. Journal of Geophysical Research 88, 10844 − 10858.
Lyle, H., 1994. Technical and Economic Assessmenet of Biodiesel for Vehicular Fuel Use. Bi-State Developmenet Agency.
McCarty, R.D., Hord, J., Roder, H.M., 1981. Selected Properties of Hydrogen (engineering design data), U.S. Department of commerce, National Bureau of Standards, Washington, DC, NBS Monogtaph 168.
Montzakz, S.A., Trainer, M., Goldan, P.D., Kuster, W.C., Fehsenfeld, F.C., 1993. Journal of Geophysical Research 98, 1101.
Müller, K., 1997. Determination of Aldehydes and Ketones in the Atmosphere-A Comparative Long Time Study at an Urban and a Rural Site in Eastern Germany. Chemosphere 35, 2093 − 2106.
National Academy Press, 1991. National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution. Washington, D.C.
Nielsen, T., 1996. Traffic Contribution of Polycyclic Aromatic Hydrocarbons in the Center of a Large City. Atmospheric Environment 30, 3481 − 3490.
Oberdorter, P.E., 1976. The Determination of Aldehydes in Automobile Exhaust. SAE Paper 760378.
Osama, M.M., Matar, M.S., Koreish, S., 1993. Effect of Methyl Tertiary Butyl Ether (MTBE) as a Gasoline Additive on Engine Performance and Exhaust Emission. Fuel Science and Technology International 11, 1331 − 1343.
Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen H., Li, R., 2006. Characteristics of Carbonyl Compounds Emission from a Diesel-Engine Using Biodiesel-Ethanol-Diesel as Fuel. Atmospheric Environment 40, 7057 − 7065.
Perkins, H.C., 1974. Air Pollution. McGraw-Hill Book Company.
Possanzini, M., Dipalo, V., 1995. Determination of Olefinic Aldehydes Other Volatile VOCs in Air Samples by DNPH-Coated Cartridges and HPLC. Chromatographia 40, 134 − 148.
Possanzini, M., Dipalo, V., Petricca, M., Fratarcangeli, R., Brocco, D., 1996. Atmospheric Environment 30, 3757 − 3764.
Raber, W.H., Moortgat, G.K., 1995. Photooxidation of Selected Carbonyl Compounds in Air: Methyl Ethyl Ketone, Methyl Vinyl Ketone, Methacrolein and Methylglyxal. Progress and Problems in Atmospheric Chemistry, Advanced Series in Physical Chemistry-Vol. 3, World Scientific Publishing Co. Pte. Ltd., Singapore, 319.
Raktim, P., Kim, K.H., Hong, Y.J., Jeon, E.C., 2007. The Pollution Status of Atmospheric Carbonyls in Highly Industrialized Area. Journal of Hazardous Materials 153, 1122 − 1135.
Rickeard, D.J., Bonetto, R., Signer, M., 1996. European Programme on Emissions, Fuels and Engine Technologies (EPEFE): Comparison of Light and Heavy Duty Diesel Studies. SAE Technical Paper Series 961075.
Saravanan, N., Nagarajan, G., Kalaiselvan, K.M., Dhanasekaran, C., 2008. An Experimental Investigation on Hydrogen as a Dual Fuel for Diesel Engine System with Exhaust Gas Recirculation Technique. Renew Energy 33, 422 − 427.
Saravanan, N., Nagarajan, G., Narayanasamy, S., 2008. An Experimental Investigation on DI Diesel Engine with Hydrogen Fuel. Renew Energy 33, 415 − 421.
Schifter, 2000. Estimation of Motor Vehicle Toxic Emissions in the Metropolitan Area of Mexico City. Environment Science & Technology 34, 3606 − 3610.
Schifter, I., Díaz, L., Guzman, E., Lopez-Salinas, E., 2004. Fuelformulation and Vehicle Exhaust Emissions in Mexico. Fuel 83, 2065 − 2074.
Schmitz T., Hassel D., Weber F.J., 2000. Determination of VOC-Components in the Exhaust of Gasoline and Diesel Passenger Cars. Atmospheric Environment 34, 4639 − 4647.
Schulam, P., Newbold, R., Hull, L.A., 1985. Urban and Rural Ambient Air Aldehyde Levels in Schenectady, New York and on Whiteface Mountain, New York. Atmospheric Environment 19, 623 − 626.
Seinfeld, J.H., 1986. Atmospheric Chemistry and Physics of Air Pollution. John Wiley and Sons Inc., Canada, 58 − 59.
Seinfeld, J.H., 1995. Chapter 2 Chemistry of Ozone in the Urban and Regional Atmosphere. Progress and Problems in Atmospheric Chemistry, Advanced Series in Physical Chemistry, World Scientific Publishing Co. Pte. Ltd., Singapore, 47 − 56.
Shepson, P.B., Hastie, D.R., Schiff, H.I., Polizzi, M., Bottenheim, J.W., Anlauf, K., Mackay, G.I., Karecki, D.R., 1991. Atmospheric Concentrations amd Temporal Variations of C1 − C3 Carbonyl-Compounds at 2 Rural Sites in Central Ontario. Atmospheric Environment Part A-General Topics 25, 2001 − 2015.
Shi, X., 2006. Emission Reduction Potential of Using Ethanol-Biodiesel-Diesel Fuel Blend on a Heavy-Duty Diesel Engine. Atmospheric Environment 40, 2567 − 2574.
Singh, H.B., Ohara, D., Herlth, D., Sachse, W., Blake, D.R., Bradshaw, J.D., Kanakidou, M., Crutzen, P.J., 1994. Acetone in the Atmosphere-Distribution, Sources, and Sinks. Journal of Geophysical Research-Atmosphere 99, 1805 − 1819.
Sitting, M., 1974. Aldehydes. Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, New Jersey.
Stebar, R.F., Parks, F.B., 1974. Emission Control with Lean Operation Using Hydrogen-Supplemented Fuel. SAE paper 740187.
Swain, N., 1996. Design and Testing of Dedicated Hydrogen-Fueled Engine. SAE paper 961077.
Sweet, C.W., Vermette, S.J., 1992. Toxic Volatile Organic Compounds in Urban Air in Illinois. Environment Science & Technology 26, 165 − 173.
Sweet, C.W., Vermette, S.J., 1993. Source of Toxic Elements in Urban Air in Illinois. Environmental Science & Technology 27, 2502 − 2510.
Tancell, P.J., Rhead, M.M., Pemberton, R.D., Braven, J., 1995. Survival of Polycyclic Aromatic Hydrocarbons during Diesel Combustion. Environmental Science and Technology 29, 2871 − 2876.
Tanner, R.L., Miguel, A., Andrade, J.B., Gaffney, J.S., Streit, G.E., 1988. Atmospheric Chemistry of Aldehyde - Enhance Peroxyacetyl Nitrate Formation
from Ethanol-Fueled Vehicular Emission. Environmental Science and Technology 22, 1026 - 1034.
Tomin, J., Kent, J., 1982. Proceedings of Fifth International Alcohol Fuel Technology Sympium. 207 - 214.
Tsai, P.J., Shih, T.S., Chen, H.L., Lee, W.J., Lai, C.H., Liou, S.H., 2004. Assessing and Predicting the Exposures of Polycyclic Aromatic Hydrocarbons (PAHs) and Their Carcinogenic Potencies from Vehicle Engine Exhausts to Highway Toll Station Workers. Atmospheric Environment 38, 333 – 343.
Turrio-Baldassarri, L., Battistelli, C.L., Conti, L., Crebelli, R., De Berardis, B., Iamiceli, A.L., Gambino, M., Iannaccone, S., 2004. Emission Comparison of Urban Bus Engine Fueled with Diesel Oil and Biodiesel Blend. Science of the Total Environment 327, 147 – 162.
USEPA, 2000. Control of Emissions of Hazardous Air Pollutants from Motor Vehicles and Motor Vehicle Fuels. EPA420-R-00-023.
USEPA, 2006. Technology Transfer Network National Air Toxics Assessment, http://www.epa.gov/ttn/atw/nata/chartrisk.html.
Vairavamurthy, A., Roberts, J.M., Newman, L., 1992. A Review: Methods for Determination of Low Molecular Weight Carbonyl Compounds in the Atmosphere. Atmospheric Environment 26A, 1965 1993.
Verhelst, S., Sierens, R., 2001. Hydrogen Engine-Specific Properties.
Verhelst, S., Woolley, R., Lawes, M., Sierens, R., 2005. Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen-Air Mixtures at Engine-Like Conditions. International Journal of Hydrogen Energy 30, 209 –
216.
Viskari, E.L., Vartiainen, M., Pasanen, P., 2000. Seasonal and Diurnal Variation in Formaldehyde and Acetaldehyde Concentrations along a Highway in Eastern Finland. Atmospheric Environment 34, 917 - 923.
Warneck, P., 1988.「International Geophysical」, Elsevier Inc.
Weilenmann, M., 2005. Regulated and Nonregulated Diesel and Gasoline Cold Start Emissions at Different Temperatures. Atmospheric Environment 39, 2433 –2441.
Williams, I.D., Revitt, D.M., Hamilton, R.S., 1996. A Comparison of Carbonyl Compound Concentrations at Urban Roadside and Indoor Sites. The Science of Total Environmental 189/190, 475 - 483.
Yükesl, F., Yükesl, B., 2004. The Use of Ethanol-Gasoline Blend as a Fuel in an SI Engine. Renewable energy 29, 1181 - 1191.
Zervas, E., Montagee, X., Lahate, J., 2002. Emission of Alcohols and VOC Compounds from a Spark Ignition Engine. Influence of Fuel and Air/Fuel Equivalence Ratio. Environment Science & Technology 36, 2414 – 2421.
Zervas, E., Montagne, X., Lahaye J., 2001. Emission of Specific Pollutants from a Compression Ignition Engine. Influence of Fuel Hydrotreatment and Fuel/Air Equivalence Ratio. Atmospheric Environment 35, 1301 – 1306.
Zhu, J., 2003. Comparison of Vehicle Exhaust Emissions from Modified Diesel Fuels.
Journal of the Air & Waste Management Association 53, 67 - 76.
Zhu, J., Cao, X.L., Pigeon, R., Mitchell, K., 2003. Comparison of Vehicle Exhaust Emissions from Modified Diesel Fuels. Journal of the Air & Waste Management Association 53, 67 - 76.
Zweiding, R.B., Sigsby, J.E., Tejada, Jr. S.B., Stump, F.S., Dropkin, D.L., Ray, W.D., 1988. Detailed Hydrocarbon and Aldehyde Mobile Source Emissions from Roadway Studies. Environmental Science and Technology 22, 956 - 962.
毛宗強,2008,「氫能:21世紀的綠色能源」,新文京開發出版社,台北縣。
王信凱,2008,「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研究」,國立中山大學環境工程研究所,博士論文。
王建鴻,2000,「乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究」,國立成功大學環境工程研究所,碩士論文。
曲新生、陳發林、呂錫民,2007,「產氫與儲氫技術」,五南圖書出版股份有限公司,台北市。
何文淵,1999,「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,國立成功大學環境工程研究所,碩士論文。
何永盛和李文智,1996,「柴油品質對車輛排放污染物之影響研究」,行政院環保署計劃EPA-85-1402-09-35。
吳志鴻,1999,「控制參數改變對液化石油氣雙燃料引擎的影響」,國立台灣大學,碩士論文。
吳俊毅,2007,「高雄市大氣中醛酮類化合物之濃度特徵及時空分佈調查分析」,中山大學環境工程研究所,碩士論文。
吳贊鐸,1990,「柴油車空氣污染學」,淑馨出版社,台北。
吳贊鐸,1999,「對汽柴油引擎性能、污染、毒性與噪音特性分析及最佳化設計之研究」,國立台灣大學工程科學及海洋工程學系暨研究所,博士論文。
呂局校,2006,「高雄市大氣中多環芳香烴化合物濃度特徵之調查分析」,國立中山大學環境工程研究所,碩士論文。
呂振宇與王麗婷,2000,「天然氣公車車隊設立分析與推廣效益評估」,車輛研測資訊。
李建德,2006,「從922國際無車日談替代性清潔燃料的發展現況」,車輛研測資訊。
林成原,2001,「天然氣車輛之排氣和性能特性」,能源季刊。
翁閎政,1999,「機車排氣之揮發性有機物特徵及光化反應性研究」,國立成功大學環境工程研究所,碩士論文。
張笙又,2006,「生質柴油燃料比例對引擎排放有機氣態污染物特徵影響研究」,國立成功大學環境工程研究所,碩士論文。
許震遠,2000,「柴油機之設計理論」,復漢出版社有限公司,台南市。
陳千翔,2006,「大氣多環芳香烴濃度於露天燃燒地區之時空分佈特徵」,國立中山大學環境工程研究所,碩士論文。
陳維新與江金龍,2009,「空氣污染與控制」,高立圖書有限公司,台北縣。
黃靖雄,1991,「汽車排氣污染與控制全書」,正工出版社,台中市。
黃靖雄,2002,「現代低公害省油汽車排氣污染控制技術及裝置」,全華科技圖書出版,台北縣。
黃錦宏,2008,「高雄地區大氣中醛酮類化合物濃度時空分佈調查分析」,國立中山大學環境工程研究所,碩士論文。
楊明益,2000,「高屏地區大氣醛酮化合物與臭氧污染事件關聯性」,國立成功大學環境工程研究所,碩士論文。
楊思裕,1997,「柴油引擎」,全華科技圖書出版,台北縣。
詹長權,1995,「建立石油類燃料排放揮發性物質(VOCs)資料庫及危害風險管理規劃-以管制油品來降低大氣中毒性污染物濃度:醛類」,行政院環保署計劃EPA-84-F102-09-01。
劉育穎,2001,「機車排放醛酮類化合物特徵與光化反應性研究」,國立成功大學環境工程研究所,碩士論文。
蔡信行,2003,「替代能源與再生能源」,科學發展365期,62 – 67。
謝煜生、梁燕輝、邱澄彬,1980,「甲醇作輔助燃料噴射於柴油引擎之性能研究」,成功大學機械工程研究所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.209.66.87
論文開放下載的時間是 校外不公開

Your IP address is 18.209.66.87
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code