Responsive image
博碩士論文 etd-0623113-113055 詳細資訊
Title page for etd-0623113-113055
論文名稱
Title
魚類眼球晶體蛋白質表現之變異
Variation in fish lens protein expression
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
210
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-25
繳交日期
Date of Submission
2013-07-23
關鍵字
Keywords
土虱、晶狀體蛋白質、伴護蛋白、白化症、退化眼球水晶體、蛋白質組學分析、黃鱔
albinism, chaperone, degenerative eye lenses, lens crystallins, proteomics analysis, catfish, rice eel
統計
Statistics
本論文已被瀏覽 5670 次,被下載 773
The thesis/dissertation has been browsed 5670 times, has been downloaded 773 times.
中文摘要
本研究之目的是分析與比較不同光照環境下,魚類眼球水晶體蛋白質表現的多樣性。我們利用最先進的蛋白質組學的方法,來觀察眼球水晶體蛋白質的變化,特別是生活於永久黑暗環境下的魚類,其眼球水晶體功能的喪失與演化的相關性。
實驗主題分為三部份:(1)以夜行性退化眼球的黃鱔和土虱,與晝行性眼球正常的斑馬魚作比較,來探究各種水晶體蛋白在光照視覺上的重要性。(2)分析比較側斑兵鯰的白化個體 (Corydoras aeneus var.)與正常個體(Corydoras aeneus),眼球水晶體蛋白表現之異同。(3)比較由淺海至深海環境下生存的10個海水魚種,其眼球水晶體蛋白質的組成分佈。
研磨萃出魚類眼球水晶體的可溶性總蛋白後,將蛋白質經由一維和二維電泳凝膠 (1-D or 2-D gel) 的分離,及新型的散彈分析法,而一維和二維的蛋白條帶或斑點,經酵素水解後以LC-MS/MS液相色層串聯質譜法,憑藉資料庫中斑馬魚的蛋白質體為比對標準,進行分析。研究結果,大致可知魚類的晶狀體蛋白質,主要包括α-、β-和γ-晶狀體蛋白質。
在黃鱔的眼球水晶體中,β-和γ-晶狀體蛋白質含量約超過總體蛋白質的98%,而幾乎沒有α-晶狀體蛋白質被檢測出來。而儘管夜行性黃鱔與土虱的生活習性相近,但在α-晶狀體蛋白質的表現上有明顯的不同。
有關比較側斑兵鯰 (Corydoras aeneus) 與該種之白化個體 (Corydoras aeneus var.) 的結果,其各晶狀體蛋白質的百分率組成均很相近。然而在2-D凝膠上,α-晶狀體表現區,在側斑兵鯰原生個體的3個點的分佈明顯不同於白化個體的6個點的表現。
有關生活在淺海層,中深層與深海層的魚種,其眼球水晶體蛋白質的比較中,顯示隨著海水深度的增加,α-晶狀體的百分率逐漸減少,而γ-晶狀體的組成百分率,卻逐漸增加。
利用蛋白質體學的方法研究魚種中的α-,β-和γ-晶狀體蛋白,能清楚地表明魚類之相同蛋白質的多樣性和複雜性。值得注意的是,在夜行性退化眼球的黃鱔與深海底棲性的黑口鮟鱇(Lophiomus setigerus)中,其α-晶體蛋白質的減少,指出α-晶體蛋白質在魚類眼球水晶體中扮演保護的角色,可防止其它蛋白質的聚集現象,以維持不同環境下,脊椎動物眼球水晶體的透光度,是不可少的。而α-晶體蛋白質的伴護功能是未來值得更進一步研究的課題。
Abstract
The aim of this study was to determine the lens crystallin diversity of fishes living in varied environmental habitats under different light conditions. We employed state-of-the-art proteomics methodologies to investigate proteomic change associated with the evolution of fish lenses particularly concerning the functional loss of lenses in eyes of fishes living under an environment of perpetual darkness.
The experiments were divided into three parts: the first part is to analyze the degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish; the second part is to analyze and compare the different electrophoretic protein spots of albino-type fish (Corydoras aeneus var.) and wild-type fish (Corydoras aeneus); the third part is to analyze the crystallin distribution in the eye lenses of ten piscine species from epipelagic to bathypelagic environments.
Fish lenses were collected and homogenized to extract total soluble proteins. The protein mixtures were separated by one- and two-dimensional gel electrophoresis (1-D or 2-D gel), samples of the first-part study were analyzed by the newer gel-free shotgun proteomic strategy, followed by in-gel digestion and the digested protein bands or spots subjected to liquid chromatography coupled with tandem mass spectrometry. The proteomics data were analyzed and compared based on the proteomics databank of zebrafish. The validation and comparison of various crystallin families, e.g., α-, β-, and γ-crystallins were based on 1-D and 2-D sodium dodecyl sulfate–polyacrylamide gel electrophoresis.
In rice eel’s lenses, β- and γ-crystallins comprised more than 98% of total lens proteins whereas very little or almost no α-crystallin was detected. It was of interest to note that α-crystallin showing obvious differences in protein contents between the nocturnal fishes of rice eel and catfish in spite of the similarity in their living habitat.
For the wild type and albino mutant of Corydoras aeneus’s eye lenses, it was found that the crystallin content is very similar between the two. However the 2-D gel show that α-crystallin region of Corydoras aeneus lenses containing 3 protein spots, which was different from that of Corydoras aeneus var. lenses containing 6 spots.
For experiments on lens protein variation in fishes from environments of different light exposure such as fishes living in the epipelagic, mesopelagic and bathypelagic zones, the content of α-crystallin decreased, and γ-crystallin increased with the ocean depths of piscine living habitats.
The total numbers of α-, β-, and γ-crystallins in the piscine species examined by the current proteomics methodology clearly indicate the complexity and diversity of crystallin species present in different fish species. It is noteworthy that only small amount of α-crystallin was present in the degenerative eye lenses of rice eel and bathydemersal fish species (i.e., Lophiomus setigerus), which points to the fact that this crystallin acting as a chaperone protein may be essential in vertebrate species to protect lens proteins from aggregation and to maintain functional transparency of the lens under varied environmental conditions. A detailed study on the correlation between the chaperone function and lens development warrants future investigation.
目次 Table of Contents
論文審定書 …………………………………………………………… i
誌謝 …………………………………………………………… ii
摘要 …………………………………………………………… iii
英文摘要 …………………………………………………………… v
目錄 …………………………………………………………… vii

圖次 …………………………………………………………… ix
表次 …………………………………………………………… xi
第一章 研究背景與目的
第一節 視覺系統在生物演化的角色…………………………… 1
第二節 魚類視覺與其生存環境的相關性……………………… 1
第三節 水生魚類與陸生動物視覺上的不同…………………… 2
第四節 以蛋白質體 (proteome) 研究各種不同生活情況下之魚類水晶體…………………………………………………
2
第五節 研究的重點與目的……………………………………… 4
第二章 動物體眼球及水晶體之結構功能
第一節 水晶體的形成與構造…………………………………… 6
第二節 水晶體蛋白質 (crystallin) 的組成……………………… 7
第三節 水晶體蛋白各論………………………………………… 9
第三章 材料與方法
第一節 實驗材料………………………………………………… 19
第二節 實驗方法………………………………………………… 19
第四章 夜行性黃鱔及土虱與晝行性斑馬魚水晶體蛋白質體之特徵
第一節 摘要……………………………………………………… 27
第二節 前言……………………………………………………… 28
第三節 材料與方法……………………………………………… 29
第四節 結果與討論……………………………………………… 33
第五節 結論……………………………………………………… 41
第五章 白化症魚類眼球水晶體成分之特徵
第一節 摘要……………………………………………………… 43
第二節 前言……………………………………………………… 44
第三節 材料與方法……………………………………………… 45
第四節 結果……………………………………………………… 46
第五節 討論……………………………………………………… 47
第六節 結論……………………………………………………… 51
第六章 不同光強度海域魚類眼球水晶體蛋白質組成之差異
第一節 摘要……………………………………………………… 53
第二節 前言……………………………………………………… 54
第三節 材料與方法……………………………………………… 55
第四節 結果與討論……………………………………………… 56
第五節 結論……………………………………………………… 62
第七章 總結論…………………………………………………… 63
第八章 參考文獻………………………………………………… 145
附錄一 藥品配方與製作………………………………………… 160
附錄二 本論文研究期間發表之相關論文……………………… 164
參考文獻 References
Abramowitz, J., W. A. Turner, Jr., W. Chavin, and J. D. Taylor. 1977. Trysinase positive oculocutaneous albinism in the goldfish, Carassius auratus l., and ultrastructural and biochemical study of the eye. Cell Tissue Res 182:409-419.
Adriaens, D. and W. Verraes. 1997. The ontogeny of the chondrocranium in Clarias gariepinus: trends in siluroids. J Fish Biol 50:1221-1257.
Aebersold, R. and D. R. Goodlett. 2001. Mass spectrometry in proteomics. Chem Rev 101:269-295.
al-Ghoul, K. J. and M. J. Costello. 1997. Light microscopic variation of fiber cell size, shape and ordering in the equatorial plane of bovine and human lenses. Mol Vis 3:2.
Andrefouet, S. and L. Wantiez. 2010. Characterizing the diversity of coral reef habitats and fish communities found in a UNESCO World Heritage Site: the strategy developed for Lagoons of New Caledonia. Mar Pollut Bull 61:612-620.
Baldwin, A. J., P. Walsh, D. F. Hansen, G. R. Hilton, J. L. Benesch, S. Sharpe, and L. E. Kay. 2012. Probing dynamic conformations of the high-molecular-weight alphaB-crystallin heat shock protein ensemble by NMR spectroscopy. J Am Chem Soc 134:15343-15350.
Barron, B. C., J. F. Kuck, and K. D. Kuck. 1984. The Emory mouse cataract: changes in the beta and gamma-crystallins during aging and cataractogenesis as revealed by isoelectric focusing of the native soluble proteins. Curr Eye Res 3:1365-1372.
Berbers, G. A., W. A. Hoekman, H. Bloemendal, W. W. de Jong, T. Kleinschmidt, and G. Braunitzer. 1984. Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem 139:467-479.
Bhat, S. P. and C. N. Nagineni. 1989. alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158:319-325.
Bilgihan, A., M. K. Bilgihan, R. F. Akata, A. Aricioglu, and B. Hasanreisoglu. 1995. Antioxidative role of ocular melanin pigment in the model of lens induced uveitis. Free Radic Biol Med 19:883-885.
Bloemendal, H. 1977. The vertebrate eye lens. Science 197:127-138.
Bloemendal, H., W. de Jong, R. Jaenicke, N. H. Lubsen, C. Slingsby, and A. Tardieu. 2004. Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407-485.
Bon, W. F., G. Ruttenberg, A. Dohrn, and H. Batink. 1968. Comparative physicochemical investigations on the lens proteins of fishes. Exp Eye Res 7:603-610.
Borkman, R. F., G. Knight, and B. Obi. 1996. The molecular chaperone alpha-crystallin inhibits UV-induced protein aggregation. Exp Eye Res 62:141-148.
Borst, D. E. and D. S. McDevitt. 1987. Eye lens regeneration and the crystallins in the adult newt, Notophthalmus viridescens. Exp Eye Res 45:419-441.
Brady, J. P., D. Garland, Y. Duglas-Tabor, W. G. Robison, Jr., A. Groome, and E. F. Wawrousek. 1997. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A 94:884-889.
Brady, J. P., D. L. Garland, D. E. Green, E. R. Tamm, F. J. Giblin, and E. F. Wawrousek. 2001. AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924-2934.
Brunekreef, G. A., S. T. van Genesen, O. H. Destree, and N. H. Lubsen. 1997. Extralenticular expression of Xenopus laevis alpha-, beta-, and gamma-crystallin genes. Invest Ophthalmol Vis Sci 38:2764-2771.
Calhoun, W. B., 3rd and V. L. Koenig. 1970. The distribution of the soluble proteins in the lenses of some marine vertebrates. Comp Biochem Physiol 34:71-80.
Cameron, D. A., K. L. Gentile, F. A. Middleton, and P. Yurco. 2005. Gene expression profiles of intact and regenerating zebrafish retina. Mol Vis 11:775-791.
Carver, J. A., K. A. Nicholls, J. A. Aquilina, and R. J. Truscott. 1996. Age-related changes in bovine alpha-crystallin and high-molecular-weight protein. Exp Eye Res 63:639-647.
Chang, T., Y. J. Jiang, S. H. Chiou, and W. C. Chang. 1988. Carp gamma-crystallins with high methionine content: cloning and sequencing of the complementary DNA. Biochim Biophys Acta 951:226-229.
Chiou, S. H. 1984. Physicochemical characterization of a crystallin from the squid lens and its comparison with vertebrate lens crystallins. J Biochem 95:75-82.
Chiou, S. H. 1986. Phylogenetic comparison of lens crystallins from the vertebrate and invertebrate--convergent or divergent evolution? FEBS Lett 201:69-73.
Chiou, S. H. 1987. Biochemical characterization of crystallins from frog lenses. Int J Pept Protein Res 30:108-116.
Chiou, S. H. 1988. A novel crystallin from octopus lens. FEBS Lett 241:261-264.
Chiou, S. H., P. Azari, M. E. Himmel, and P. G. Squire. 1979. Isolation and physical characterization of bovine lens crystallins. Int J Pept Protein Res 13:409-417.
Chiou, S. H., T. Chang, W. C. Chang, J. Kuo, and T. B. Lo. 1986. Characterization of lens crystallins and their mRNA from the carp lenses. Biochim Biophys Acta 871:324-328.
Chiou, S. H., W. C. Chang, F. M. Pan, T. Chang, and T. B. Lo. 1987. Physicochemical characterization of lens crystallins from the carp and biochemical comparison with other vertebrate and invertebrate crystallins. J Biochem 101:751-759.
Chiou, S. H., W. P. Chang, and C. H. Lo. 1988. Biochemical comparison of lens crystallins from three reptilian species. Biochim Biophys Acta 955:1-9.
Chiou, S. H., S. W. Chen, T. Itoh, H. Kaji, and T. Samejima. 1990. Comparison of the gamma-crystallins isolated from eye lenses of shark and carp. Unique secondary and tertiary structure of shark gamma-crystallin. FEBS Lett 275:111-113.
Chiou, S. H., C. H. Huang, I. L. Lee, Y. T. Wang, N. Y. Liu, Y. G. Tsay, and Y. J. Chen. 2010. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Mol Vis 16:294-302.
Chiou, S. H., F. M. Pan, H. W. Peng, Y. K. Chao, and W. C. Chang. 1998. Characterization of gammaS-crystallin isoforms from a catfish: evolutionary comparison of various gamma-, gammaS-, and beta-crystallins. Biochem Biophys Res Commun 252:412-419.
Chiou, S. H. and C. Y. Wu. 2011. Clinical proteomics: current status, challenges, and future perspectives. Kaohsiung J Med Sci 27:1-14.
Chiou, S. H. and S. H. Wu. 1999. Evaluation of commonly used electrophoretic methods for the analysis of proteins and peptides and their application to biotechnology. Anal Chim Acta 383:47-60.
Chuang, M. H., M. S. Wu, W. L. Lo, J. T. Lin, C. H. Wong, and S. H. Chiou. 2006. The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci U S A 103:2552-2557.
Cohen, D., U. Bar-Yosef, J. Levy, L. Gradstein, N. Belfair, R. Ofir, S. Joshua, T. Lifshitz, R. Carmi, and O. S. Birk. 2007. Homozygous CRYBB1 deletion mutation underlies autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 48:2208-2213.
Cooper, P. N., M. Jackson, G. Lennox, J. Lowe, and D. M. Mann. 1995. Tau, ubiquitin, and alpha B-crystallin immunohistochemistry define the principal causes of degenerative frontotemporal dementia. Arch Neurol 52:1011-1015.
Crescitelli, F. 1990. Adaptations of visual pigments to the photic environment of the deep sea. J Exp Zool Suppl 5:66-75.
Culver, D. C. 1982. Cave life: Evolution and ecology. Harvard University Press, Cambridge (MA).
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. Jonn Murray, London.
de Jong, W. W. 1981. Evolution of lens and crystallins. Pages 221-278 in H. Bloemendal, editor. Molecular and Cellular Biology of the Eye Lens. Wiley, New York.
de Jong, W. W., G. J. Caspers, and J. A. Leunissen. 1998. Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol 22:151-162.
de Jong, W. W. and W. Hendriks. 1986. The eye lens crystallins: ambiguity as evolutionary strategy. J Mol Evol 24:121-129.
de Jong, W. W., W. Hendriks, J. W. Mulders, and H. Bloemendal. 1989. Evolution of eye lens crystallins: the stress connection. Trends Biochem Sci 14:365-368.
Derham, B. K. and J. J. Harding. 1999. Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res 18:463-509.
Douglas, R. H., J. C. Partridge, and N. J. Marshall. 1998. The eyes of deep-sea fish. I: Lens pigmentation, tapeta and visual pigments. Prog Retin Eye Res 17:597-636.
Dubin, R. A., R. Gopal-Srivastava, E. F. Wawrousek, and J. Piatigorsky. 1991. Expression of the murine alpha B-crystallin gene in lens and skeletal muscle: identification of a muscle-preferred enhancer. Mol Cell Biol 11:4340-4349.
Dubin, R. A., E. F. Wawrousek, and J. Piatigorsky. 1989. Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol Cell Biol 9:1083-1091.
Duguid, J. R., R. G. Rohwer, and B. Seed. 1988. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A 85:5738-5742.
Easter, S. S., Jr. and G. N. Nicola. 1996. The development of vision in the zebrafish (Danio rerio). Dev Biol 180:646-663.
Fadool, J. M. and J. E. Dowling. 2008. Zebrafish: a model system for the study of eye genetics. Prog Retin Eye Res 27:89-110.
Fagerholm, P. P., B. T. Philipson, and B. Lindstrom. 1981. Normal human lens - the distribution of protein. Exp Eye Res 33:615-620.
Ferrini, W., D. F. Schorderet, P. Othenin-Girard, S. Uffer, E. Heon, and F. L. Munier. 2004. CRYBA3/A1 gene mutation associated with suture-sparing autosomal dominant congenital nuclear cataract: a novel phenotype. Invest Ophthalmol Vis Sci 45:1436-1441.
Flugel, C., S. Liebe, C. Voorter, H. Bloemendal, and E. Lutjen-Drecoll. 1993. Distribution of alpha B-crystallin in the anterior segment of primate and bovine eyes. Curr Eye Res 12:871-876.
Gagnon, Y. L., R. H. Kroger, and B. Soderberg. 2010. Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses. Vision Res 50:850-853.
Gellman, S. H. 1991. On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30:6633-6636.
Giancola, C., E. Pizzo, A. Di Maro, M. V. Cubellis, and G. D'Alessio. 2005. Preparation and characterization of geodin. A betagamma-crystallin-type protein from a sponge. FEBS J 272:1023-1035.
Glass, A. S. and R. Dahm. 2004. The zebrafish as a model organism for eye development. Ophthalmic Res 36:4-24.
Goishi, K., A. Shimizu, G. Najarro, S. Watanabe, R. Rogers, L. I. Zon, and M. Klagsbrun. 2006. αA-crystallin expression prevents γ-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens. Development 133:2585-2593.
Golenhofen, N., A. Arbeiter, R. Koob, and D. Drenckhahn. 2002. Ischemia-induced association of the stress protein alpha B-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34:309-319.
Groenen, P. J., K. B. Merck, W. W. de Jong, and H. Bloemendal. 1994. Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225:1-19.
Han, C. L., C. W. Chien, W. C. Chen, Y. R. Chen, C. P. Wu, H. Li, and Y. J. Chen. 2008. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 7:1983-1997.
Hanson, S. R., A. Hasan, D. L. Smith, and J. B. Smith. 2000. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res 71:195-207.
Harding, J. J. and K. J. Dilley. 1976. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res 22:1-73.
Heazlewood, J. L., J. S. Tonti-Filippini, A. M. Gout, D. A. Day, J. Whelan, and A. H. Millar. 2004. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241-256.
Henzel, W. J., T. M. Billeci, J. T. Stults, S. C. Wong, C. Grimley, and C. Watanabe. 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90:5011-5015.
Hoehenwarter, W., J. Klose, and P. R. Jungblut. 2006. Eye lens proteomics. Amino Acids 30:369-389.
Hogg, D., L. C. Tsui, M. Gorin, and M. L. Breitman. 1986. Characterization of the human beta-crystallin gene Hu beta A3/A1 reveals ancestral relationships among the beta gamma-crystallin superfamily. J Biol Chem 261:12420-12427.
Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449-10453.
Horwitz, J. 1993. Proctor Lecture. The function of alpha-crystallin. Invest Ophthalmol Vis Sci 34:10-22.
Horwitz, J. 2003. Alpha-crystallin. Exp Eye Res 76:145-153.
Hsu, S. H., M. C. Lai, T. K. Er, S. N. Yang, C. H. Hung, H. H. Tsai, Y. C. Lin, J. G. Chang, Y. C. Lo, and Y. J. Jong. 2010. Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) regulates the level of SMN expression through ubiquitination in primary spinal muscular atrophy fibroblasts. Clin Chim Acta 411:1920-1928.
Huang, A. M., Y. T. Kao, S. Toh, P. Y. Lin, C. H. Chou, H. T. Hu, C. Y. Lu, J. Y. Liou, S. Y. Chao, T. C. Hour, and Y. S. Pu. 2011. UBE2M-mediated p27(Kip1) degradation in gemcitabine cytotoxicity. Biochem Pharmacol 82:35-42.
Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929-934.
Iida, A., N. Takamatsu, H. Hori, Y. Wakamatsu, A. Shimada, A. Shima, and A. Koga. 2005. Reversion mutation of ib oculocutaneous albinism to wild-type pigmentation in medaka fish. Pigment Cell Res 18:382-384.
Ingolia, T. D. and E. A. Craig. 1982. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A 79:2360-2364.
Iwaki, T., A. Kume-Iwaki, R. K. Liem, and J. E. Goldman. 1989. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57:71-78.
Jackson, M., S. Gentleman, G. Lennox, L. Ward, T. Gray, K. Randall, K. Morrell, and J. Lowe. 1995. The cortical neuritic pathology of Huntington's disease. Neuropathol Appl Neurobiol 21:18-26.
Jeffery, W. R. 2005. Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185-196.
Johnson, G. J. 1998. Limitations of epidemiology in understanding pathogenesis of cataracts. Lancet 351:925-926.
Johnson, M. S., M. J. Sutcliffe, and T. L. Blundell. 1990. Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol 30:43-59.
Kanungo, J., S. K. Swamynathan, and J. Piatigorsky. 2004. Abundant corneal gelsolin in Zebrafish and the 'four-eyed' fish, Anableps anableps: possible analogy with multifunctional lens crystallins. Exp Eye Res 79:949-956.
Kato, S., A. Hirano, T. Umahara, J. F. Llena, F. Herz, and E. Ohama. 1992. Ultrastructural and immunohistochemical studies on ballooned cortical neurons in Creutzfeldt-Jakob disease: expression of alpha B-crystallin, ubiquitin and stress-response protein 27. Acta Neuropathol 84:443-448.
Kim, K. K., R. Kim, and S. H. Kim. 1998. Crystal structure of a small heat-shock protein. Nature 394:595-599.
Kimura, M. and T. Ota. 1971. Theoretical aspects of population genetics. Monogr Popul Biol 4:1-219.
Kiss, A. J. and C. H. Cheng. 2008. Molecular diversity and genomic organisation of the alpha, beta and gamma eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni. Comp Biochem Physiol Part D Genomics Proteomics 3:155-171.
Kiss, A. J., A. Y. Mirarefi, S. Ramakrishnan, C. F. Zukoski, A. L. Devries, and C. H. Cheng. 2004. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J Exp Biol 207:4633-4649.
Klemenz, R., E. Frohli, R. H. Steiger, R. Schafer, and A. Aoyama. 1991. Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A 88:3652-3656.
Koga, A., Y. Wakamatsu, J. Kurosawa, and H. Hori. 1999. Oculocutaneous albinism in the i6 mutant of the medaka fish is associated with a deletion in the tyrosinase gene. Pigment Cell Res 12:252-258.
Koretz, J. F., E. W. Doss, and J. N. LaButti. 1998. Environmental factors influencing the chaperone-like activity of alpha-crystallin. Int J Biol Macromol 22:283-294.
Kundu, B., A. Shukla, and P. Guptasarma. 2003. Peptide scanning-based identification of regions of gamma-II crystallin involved in thermal aggregation: evidence of the involvement of structurally analogous, helix-containing loops from the two double Greek key domains of the molecule. Arch Biochem Biophys 410:69-75.
Kuszak, J. R., K. L. Peterson, and H. G. Brown. 1996. Electron microscopic observations of the crystalline lens. Microsc Res Tech 33:441-479.
Lampi, K. J., M. Shih, Y. Ueda, T. R. Shearer, and L. L. David. 2002. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map. Invest Ophthalmol Vis Sci 43:216-224.
Lanfranchi, A. 1990. Ultrastructure of the epidermal eyespots of an acoel platyhelminth. Tissue Cell 22:541-546.
Laskey, R. A., B. M. Honda, A. D. Mills, and J. T. Finch. 1978. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416-420.
Leinenbach, A., R. Hartmer, M. Lubeck, B. Kneissl, Y. A. Elnakady, C. Baessmann, R. Muller, and C. G. Huber. 2009. Proteome analysis of Sorangium cellulosum employing 2D-HPLC-MS/MS and improved database searching strategies for CID and ETD fragment spectra. J Proteome Res 8:4350-4361.
Leth-Larsen, R., R. R. Lund, and H. J. Ditzel. 2010. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 9:1369-1382.
Lewis, W. H. 1904. Experimental studies on the development of the eye in amphibia. I. On the origin of the lens. Rana palustris. American Journal of Anatomy 3:505-536.
Liaw, Y. C., S. H. Chiou, T. Chang, and W. C. Chang. 1992. Predicted secondary and tertiary structures of carp gamma-crystallins with high methionine content: role of methionine residues in the protein stability. J Biochem 112:341-345.
Lin, Y. R., H. K. Mok, Y. H. Wu, S. S. Liang, C. C. Hsiao, C. H. Huang, and S. H. Chiou. 2013. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish. Mol Vis 19:623-637.
Lu, C. Y., Y. M. Chang, W. L. Tseng, and C. H. Feng. 2009. Analysis of angiotensin II receptor antagonist and protein markers at microliter level plasma by LC-MS/MS. J Pharm Biomed Anal 49:123-128.
Lu, S. F., F. M. Pan, and S. H. Chiou. 1995. Sequence analysis of frog alpha B-crystallin cDNA: sequence homology and evolutionary comparison of alpha A, alpha B and heat shock proteins. Biochem Biophys Res Commun 216:881-891.
Lubsen, N. H., H. J. Aarts, and J. G. Schoenmakers. 1988. The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family. Prog Biophys Mol Biol 51:47-76.
Lundgren, C. H., T. R. Williams, and J. M. Nunnari. 1986. Determination of the state and content of water in normal avian, fish, porcine, bovine, and human lenses as studied by differential scanning calorimetry. Ophthalmic Res 18:90-97.
Ma, Z., S. R. Hanson, K. J. Lampi, L. L. David, D. L. Smith, and J. B. Smith. 1998. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Exp Eye Res 67:21-30.
MacCoss, M. J., W. H. McDonald, A. Saraf, R. Sadygov, J. M. Clark, J. J. Tasto, K. L. Gould, D. Wolters, M. Washburn, A. Weiss, J. I. Clark, and J. R. Yates, 3rd. 2002. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci U S A 99:7900-7905.
McDevitt, D. S. and S. K. Brahma. 1979. Embryonic Appearance of α, β, and γ Crystallins in the Periodic Albinism (ap) Mutant of Xenopus laevis. Differentiation 14:107-112.
McFall-Ngai, M., F. Crescitelli, J. Childress, and J. Horwitz. 1986. Patterns of pigmentation in the eye lens of the deep-sea hatchetfish, Argyropelecus affinis Garman. J Comp Physiol A 159:791-800.
McMahon, C., E. V. Semina, and B. A. Link. 2004. Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 138:343-350.
Mikhailov, A. T. and A. Korneev. 1979. Immunochemical study of the water-soluble lens proteins in the embryo of Xenopus laevis with the mutation of periodic albinism. Ontogenez 10:220-230.
Ngo, J. T., I. Klisak, R. A. Dubin, J. Piatigorsky, T. Mohandas, R. S. Sparkes, and J. B. Bateman. 1989. Assignment of the alpha B-crystallin gene to human chromosome 11. Genomics 5:665-669.
Nomura, K. 1982. Differentiation of lens and pigment cells in cultures of brain cells of chick embryos. Differentiation 22:179-184.
O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007-4021.
Otteson, D. C., M. Tsujikawa, T. Gunatilaka, J. Malicki, and D. J. Zack. 2005. Genomic organization of zebrafish cone-rod homeobox gene and exclusion as a candidate gene for retinal degeneration in niezerka and mikre oko. Mol Vis 11:986-995.
Pan, F. M., W. C. Chang, C. H. Lin, A. L. Hsu, and S. H. Chiou. 1995. Characterization of gamma-crystallin from a catfish: structural characterization of one major isoform with high methionine by cDNA sequencing. Biochem Mol Biol Int 35:725-732.
Pande, A., J. Pande, N. Asherie, A. Lomakin, O. Ogun, J. King, and G. B. Benedek. 2001. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci U S A 98:6116-6120.
Pendry, J. B. 2000. Negative refraction makes a perfect lens. Phys Rev Lett 85:3966-3969.
Piatigorsky, J. 1998. Multifunctional lens crystallins and corneal enzymes. More than meets the eye. Ann N Y Acad Sci 842:7-15.
Posner, M., M. Hawke, C. Lacava, C. J. Prince, N. R. Bellanco, and R. W. Corbin. 2008. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Mol Vis 14:806-814.
Poulson, T. L. and W. B. White. 1969. The Cave Environment. Science 165:971-981.
Powers, D. A. 1989. Fish as model systems. Science 246:352-358.
Pras, E., M. Frydman, E. Levy-Nissenbaum, T. Bakhan, J. Raz, E. I. Assia, and B. Goldman. 2000. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest Ophthalmol Vis Sci 41:3511-3515.
Rabilloud, T. 2000. Detecting proteins separated by 2-D gel electrophoresis. Anal Chem 72:48A-55A.
Rabilloud, T. 2002. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3-10.
Raman, B., T. Ramakrishna, and C. M. Rao. 1995. Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. J Biol Chem 270:19888-19892.
Ramirez-Rodriguez, G., H. Babu, F. Klempin, O. Krylyshkina, V. Baekelandt, R. Gijsbers, Z. Debyser, R. W. Overall, Z. Nicola, K. Fabel, and G. Kempermann. 2013. The alpha Crystallin Domain of Small Heat Shock Protein b8 (Hspb8) Acts as Survival and Differentiation Factor in Adult Hippocampal Neurogenesis. J Neurosci 33:5785-5796.
Reneker, L. W., Q. Chen, A. Bloch, L. Xie, G. Schuster, and P. A. Overbeek. 2004. Chick delta1-crystallin enhancer influences mouse alphaA-crystallin promoter activity in transgenic mice. Invest Ophthalmol Vis Sci 45:4083-4090.
Renkawek, K., G. J. Stege, and G. J. Bosman. 1999. Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson's disease. Neuroreport 10:2273-2276.
Robinson, M. L. and P. A. Overbeek. 1996. Differential expression of alpha A- and alpha B-crystallin during murine ocular development. Invest Ophthalmol Vis Sci 37:2276-2284.
Rowe, M. P., C. L. Baube, E. R. Loew, and J. B. Phillips. 2004. Optimal mechanisms for finding and selecting mates: how threespine stickleback ( Gasterosteus aculeatus) should encode male throat colors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:241-256.
Sandilands, A., A. M. Hutcheson, H. A. Long, A. R. Prescott, G. Vrensen, J. Loster, N. Klopp, R. B. Lutz, J. Graw, S. Masaki, C. M. Dobson, C. E. MacPhee, and R. A. Quinlan. 2002. Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. EMBO J 21:6005-6014.
Savage, R. M. and M. V. Danilchik. 1993. Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos. Dev Biol 157:371-382.
Sax, C. M. and J. Piatigorsky. 1994. Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv Enzymol Relat Areas Mol Biol 69:155-201.
Saxena, R. and I. C. Verma. 2010. Novel human pathological mutations. Gene symbol: TYR. Disease: Albinism, oculocutaneous 1. Hum Genet 127:488.
Shinohara, H., Y. Inaguma, S. Goto, T. Inagaki, and K. Kato. 1993. Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer's disease. J Neurol Sci 119:203-208.
Siegner, A., C. A. May, U. W. Welge-Lussen, H. Bloemendal, and E. Lutjen-Drecoll. 1996. alpha B-crystallin in the primate ciliary muscle and trabecular meshwork. Eur J Cell Biol 71:165-169.
Sinha, D., N. Esumi, C. Jaworski, C. A. Kozak, E. Pierce, and G. Wistow. 1998. Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Mol Vis 4:8.
Smith, A. A., K. Wyatt, J. Vacha, T. S. Vihtelic, J. S. Zigler, Jr., G. J. Wistow, and M. Posner. 2006. Gene duplication and separation of functions in alphaB-crystallin from zebrafish (Danio rerio). FEBS J 273:481-490.
Soto, W., J. Gutierrez, M. D. Remmenga, and M. K. Nishiguchi. 2009. Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microb Ecol 57:140-150.
Spector, A., T. Freund, L. K. Li, and R. C. Augusteyn. 1971a. Age-dependent changes in the structure of alpha crystallin. Invest Ophthalmol 10:677-686.
Spector, A., L. K. Li, R. C. Augusteyn, A. Schneider, and T. Freund. 1971b. -Crystallin. The isolation and characterization of distinct macromolecular fractions. Biochem J 124:337-343.
Spector, A. and M. Zorn. 1967. Studies upon the sulfhydryl groups of calf lens alpha-crystallins. J Biol Chem 242:3594-3600.
Srivastava, K., J. M. Chaves, O. P. Srivastava, and M. Kirk. 2008. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Exp Eye Res 87:356-366.
Srivastava, O. P. and K. Srivastava. 2003. BetaB2-crystallin undergoes extensive truncation during aging in human lenses. Biochem Biophys Res Commun 301:44-49.
Steinman, L. 1995. Multiple sclerosis. Presenting an odd autoantigen. Nature 375:739-740.
Strickler, A. G., M. S. Byerly, and W. R. Jeffery. 2007. Lens gene expression analysis reveals downregulation of the anti-apoptotic chaperone alphaA-crystallin during cavefish eye degeneration. Dev Genes Evol 217:771-782.
Summers, L. J., C. Slingsby, T. L. Blundell, J. T. den Dunnen, R. J. Moormann, and J. G. Schoenmakers. 1986. Structural variation in mammalian gamma-crystallins based on computer graphics analyses of human, rat and calf sequences. 1. Core packing and surface properties. Exp Eye Res 43:77-92.
Sun, T. X. and J. J. Liang. 1998. Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J Biol Chem 273:286-290.
Tabandeh, H., G. M. Thompson, P. Heyworth, S. Dorey, A. J. Woods, and D. Lynch. 1994. Water content, lens hardness and cataract appearance. Eye (Lond) 8 ( Pt 1):125-129.
Tanaka, H., C. Sassa, S. Ohshimo, and I. Aoki. 2013. Feeding ecology of two lanternfishes Diaphus garmani and Diaphus chrysorhynchus. J Fish Biol 82:1011-1031.
Tao, R. V. and E. Cotlier. 1975. Ceramides of human normal and cataractous lens. Biochim Biophys Acta 409:329-341.
Taylor, V. L., K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, and M. J. Costello. 1996. Morphology of the normal human lens. Invest Ophthalmol Vis Sci 37:1396-1410.
Tomarev, S. I., R. D. Zinovieva, and J. Piatigorsky. 1991. Crystallins of the octopus lens. Recruitment from detoxification enzymes. J Biol Chem 266:24226-24231.
Trantow, C. M., T. L. Cuffy, J. H. Fingert, M. H. Kuehn, and M. G. Anderson. 2011. Microarray analysis of iris gene expression in mice with mutations influencing pigmentation. Invest Ophthalmol Vis Sci 52:237-248.
Ueda, Y., M. K. Duncan, and L. L. David. 2002. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci 43:205-215.
van den, I. P. R., P. Overkamp, U. Knauf, M. Gaestel, and W. W. de Jong. 1994. Alpha A-crystallin confers cellular thermoresistance. FEBS Lett 355:54-56.
Wang, K. and A. Spector. 1994. The chaperone activity of bovine alpha crystallin. Interaction with other lens crystallins in native and denatured states. J Biol Chem 269:13601-13608.
Ward, M. N., A. M. Churcher, K. J. Dick, C. R. Laver, G. L. Owens, M. D. Polack, P. R. Ward, F. Breden, and J. S. Taylor. 2008. The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol 8:210.
Wilkins, M. R., R. D. Appel, J. E. Van Eyk, M. C. Chung, A. Gorg, M. Hecker, L. A. Huber, H. Langen, A. J. Link, Y. K. Paik, S. D. Patterson, S. R. Pennington, T. Rabilloud, R. J. Simpson, W. Weiss, and M. J. Dunn. 2006. Guidelines for the next 10 years of proteomics. Proteomics 6:4-8.
Wistow, G. 1985. Domain structure and evolution in alpha-crystallins and small heat-shock proteins. FEBS Lett 181:1-6.
Wistow, G. 1993. Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18:301-306.
Wistow, G., K. Wyatt, L. David, C. Gao, O. Bateman, S. Bernstein, S. Tomarev, L. Segovia, C. Slingsby, and T. Vihtelic. 2005. gammaN-crystallin and the evolution of the betagamma-crystallin superfamily in vertebrates. FEBS J 272:2276-2291.
Wistow, G. J. and J. Piatigorsky. 1988. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479-504.
Yamamoto, Y. and W. R. Jeffery. 2000. Central Role for the Lens in Cave Fish Eye Degeneration. Science 289:631-633.
Yu, C. M., G. G. Chang, H. C. Chang, and S. H. Chiou. 2004. Cloning and characterization of a thermostable catfish alphaB-crystallin with chaperone-like activity at high temperatures. Exp Eye Res 79:249-261.
Zhang, L. Y., B. Gong, J. P. Tong, D. S. Fan, S. W. Chiang, D. Lou, D. S. Lam, G. H. Yam, and C. P. Pang. 2009. A novel gammaD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract. Mol Vis 15:1521-1529.
Zhao, H., M. T. Magone, and P. Schuck. 2011. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index. Phys Biol 8:046004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code