Responsive image
博碩士論文 etd-0623113-123013 詳細資訊
Title page for etd-0623113-123013
論文名稱
Title
升壓式電池電源模組並聯運轉
Operation of Boost-type Battery Power Modules in Parallel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-21
繳交日期
Date of Submission
2013-07-23
關鍵字
Keywords
平衡放電、電池、電池電源模組
Balanced discharging, Battery power module, Battery
統計
Statistics
本論文已被瀏覽 5670 次,被下載 615
The thesis/dissertation has been browsed 5670 times, has been downloaded 615 times.
中文摘要
本文為改善電池組並聯操作特性,以升壓式轉換器為基礎,研製電池電源模組(Battery Power Module, BPM)並聯架構。BPM輸出端雖並聯,但各模組可個別運轉,並藉由各模組開關導通率,協調電池電流,提供負載需求。此外,若某組BPM中電池電量耗盡,可關閉該組主動開關,使之隔離,不需停止系統運作,由剩餘模組提供負載所需。文中除分析BPM並聯運轉模式,探討內阻對此架構各模組電池電流互相影響的結果。並討論電路分別操作於連續導通模式、不連續導通模式與及混合模式之各模組電池電壓、開關導通率對各模組電池電流分配比例。根據理論分析結果,依照電池電壓的高低,可決定各電池供電至負載的比例,擬定平衡放電策略。本研究使用三組並聯之升壓式BPM,配合平衡放電策略,驗證BPM並聯架構與平衡放電策略的可行性。
Abstract
To improve the parallel operation characteristics of batteries, this research attempts to configure a battery power source with boost-type battery power modules (BPMs) connected in parallel. The discharging currents of the batteries in BPMs can be individually controlled but are coordinated to execute a full amount load current. An additional benefit for the parallel configuration is the inherent fault tolerance, by which the BPMs with completely exhausted or damaged batteries can be isolated without interrupting the system operation.
In this thesis, the operation of paralleled BPMs for both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) are discussed. The analyzed results indicate that the intrinsic internal resistances of the BPMs may alleviate the interaction. A balanced discharging strategy is proposed to discharge the batteries by scheduling the battery currents in accordance with the measured battery voltages. The experiments are carried out on three boost-type BPMs in parallel to confirm the theoretical analyses and to demonstrate the feasibility of balanced discharging.
目次 Table of Contents
論文審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖表目錄 VI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 1
1-3 論文大綱 2
第二章 電池組並串聯及影響 4
2-1 電池組並串聯應用 4
2-2 電池電量量測 6
2-3 電池電源並聯模組 9
第三章 並聯放電電路 10
3-1 理想升壓式電池電源模組 10
3-2 並聯運轉 14
3-3不連續導通模式 17
3-4連續導通模式 19
3-5混合模式 19
3-6內阻對升壓式電池電源模組影響 21
第四章 放電策略 27
4-1 控制電路 27
4-2 放電策略 30
第五章 放電實驗量測 36
5-1 系統參數設定 36
5-2 平衡放電實驗 39
第六章 結論與未來研究方向 48
6-1 結論 48
6-2 未來研究方向 49
參考文獻 50
參考文獻 References
[1] C. C. Chan and K. T. Chau, “An overview of electric vehicles-challenges and opportunities,” in Proc. Industrial Electronics, Control, and Instrumentation, Vol. 1, pp. 1-6, August 1996.
[2] H. Oman, “Battery developments that will make electric vehicles practical,” IEEE Aerospace and Electronic Systems Magazine, Vol. 15, No. 8, pp. 11-21, August 2000.
[3] H. Oman, “Making batteries last longer,” IEEE Aerospace and Electronic Systems Magazine, Vol. 14, No. 9, pp. 19-21, September 1999.
[4] T. B. Gage, “Lead-acid batteries: key to electric vehicle commercialization; Experience with design, manufacture, and use of EVs,” in Proc. Battery Conference on Applications and Advances, pp. 217-222, January 2000.
[5] N. H. Kutkut and D. M. Divan, “Dynamic equalization techniques for series battery stacks,” in Proc. International Telecommunications Energy Conference, pp. 514-521, October 1996.
[6] N. H. Kutkut, D. M. Divan, and D. W. Novotny, “Charge equalization for series battery strings,” IEEE Trans. on Industry Applications, Vol. 31, No. 3, pp. 562-568, May/June 1995.
[7] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge equalization for an electric vehicle battery system,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 34, No. 1, pp. 235-246, January 1998.
[8] Y. C. Hsieh, S. P. Chou, and C. S. Moo, “Balance discharge for series-connected batteries,” in Proc. Power Electronics Specialists Conference, Vol. 4, pp. 2697-2702, June 2004.
[9] F. Feng, R. Lu, G. Wu, and C. Zhu, “A measuring method of available capacity of li-ion series battery pack,” in IEEE Vehicle Power and Propulsion Conference, pp. 389-394, October 2012.
[10] J. Kim, J. Shin, C. Chun, and B. H. Cho, “Stable configuration of a li-ion series battery pack based on a screening process for improved voltage/soc balancing,” IEEE Trans. on Power Electronics, Vol. 27, No. 1, pp. 411-424, January 2012.
[11] P. Li, Y. Pan, Y. Ma, and Q. Qin, “Study on an active voltage equalization charge system of a series battery pack,” in IEEE Electronic and Mechanical Engineering and Information Technology, Vol. 1, pp. 141-144, August 2011.
[12] S. J. Huang, B. G. Huang, and F. S. Pai, “An approach to measurements of electrical characteristics of lithium-ion battery with open-circuit voltage function,” IET on Power Electronics, Vol. 5, pp. 1968-1975, November 2012.
[13] Y. C. Hsieh, C. S. Moo, T. J. Tsai, and K. S. Ng, “High-frequency discharging characteristics of LiFePO4 battery,” in IEEE Industrial Electronics and Applications, pp. 953-957, June 2011.
[14] P. Zhang, C. Du, F. Yan, and J. Kang, “Influence of practical complications on energy efficiency of the vehicle’s lithium-ion batteries,” in Electric Information and Control Engineering, pp. 2278-2281, April 2011.
[15] B. Pattipati, C. Sankavaram, and K. Pattipati, “System identification and estimation framework for pivotal automotive battery management system characteristics,” IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews, pp. 869-884, November 2011.
[16] Z. Ding, S. Wang, W. Zhao, and M. Qu, “Study about lithium battery’s characteristics,” in IEEE Computer, Mechatronics, Control and Electronic Engineering, pp. 639-642, August 2010.
[17] N. Omar, B. Verbrugge, G. Mulder, P. van den Bossche, J. Van Mierlo, M. Daowd, M. Dhaens, and S. Pauwels, “Evaluation of performance characteristics of various lithium-ion batteries for use in BEV application,” in IEEE Vehicle Power and Propulsion Conference, pp. 1-6, September 2010.
[18] D. Xu, L. Wang, and J. Yang, “Research on li-ion battery management system,” in IEEE Electrical and Control Engineering, pp. 4106-4109, June 2010.
[19] C.C. Hua and Z.W. Syue, “Charge and discharge characteristics of lead-acid battery and LiFePO4 battery,” in IEEE Power Electronics Conference, pp. 1478-1483, June 2010.
[20] J. Wang, Z. Sun, and X. Wei, “Performance and characteristic research in LiFePO4 battery for electric vehicle applications,” in IEEE Vehicle Power and Propulsion Conference, pp. 1657-1661, September 2009.
[21] Y. C. Hsieh, W. C. Chen, K. S. Ng, and C. S. Moo, “Investigation on operating characteristics of individual cells in a lead-acid battery pack,” in Proc. Power Conversion Conference, pp. 745-750, April 2007.
[22] D. Linda, and T. B. Reddy, “Handbook of batteries,” The 3rd edition, McGraw-Hall Companies, Inc., 2001.
[23] P. T. Krein and R. S. Balog, “Life extension through charge equalization of lead-acid batteries,” in Proc. Telecommunications Energy Conference, pp. 516-523, October 2002.
[24] S. West and P. T. Krein, “Equalization of valve-regulated lead-acid batteries: issue and life test results,” in Proc. Telecommunications Energy Conference, pp. 439-446, September 2000.
[25] J. Garche, A. Jossen, and H. Döring, “The influence of different operating conditions, especially over-discharge, on the lifetime and performance of lead/acid batteries for photovoltaic systems,” Journal of Power Sources, Vol. 67, No. 1-2, pp. 201-212, July 1997.
[26] Y. C. Hsieh, S. P. Chou, and C. S. Moo, “Balance discharging for series-connected batteries,” in Proc. Power Electronics Specialists Conference, Vol. 4, pp. 2697-2702, June 2004.
[27] T. Horiba, T. Maeshima, T. Matsumura, M. Koseki, J. Arai, and Y. Muranaka, “Applications of high power density lithium ion batteries,” Journal of Power Sources, Vol. 146, No. 1-2, pp. 107-110, August 2005.
[28] “二次電池比較表”,台灣立凱電能科技股份有限公司。
[29] J. H. Aylor, A. Thieme, and B. W. Johnson, “A battery state-of-charge indicator for electric wheelchairs,” IEEE Trans. on Industrial Electronics, Vol. 39, No. 5, pp. 398-409, October 1992.
[30] S.Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, Vol. 96, No. 1, pp. 113-120, June 2001.
[31] S. Pang, J. Farrell, D. Jie, and M. Barth, “Battery state-of-charge estimation,” in Proc. American Control Conference, Vol. 2, pp. 1644-1649, June 2001.
[32] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-charge indication in portable applications,” in Proc. Industrial Electronics, Vol. 3, pp. 1007-1012, June 2005.
[33] Kurisawa and M. Iwata, “Internal resistance and deterioration of VRLA battery-analysis of internal resistance obtained by direct current measurement and its application to VRLA battery monitoring technique,” in Proc. Telecommunications Energy Conference, pp. 687-694, October 1997.
[34] Kawamura and T. Yanagihara, “State of charge estimation of sealed lead-acid batteries used for electric vehicles,” in Proc. Power Electronics Specialists Conference, Vol. 1, pp. 583-587, May 1998.
[35] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,中華民國九十六年六月。
[36] W. Hong, K. S. Ng, J. H. Hu, and C. S. Moo, “Charge equalization of battery power modules in series,” in IEEE Power Electronics Conference, pp. 1568-1572, June 2010.
[37] C. S. Moo, K. S. Ng, and J. S. Hu, “Operation of battery power modules with series output,” in IEEE Industrial Technology, pp. 1-6, February 2009.
[38] C. S. Moo, K. S. Ng, and Y. C. Hsieh, “Parallel operation of battery power modules,” IEEE Trans. on Energy Conversion, Vol. 23, No. 2, pp. 701-707, June 2008.
[39] 詹家福,“陣列式升壓型電池電源模組之架構與分析”,國立中山大學電機工程研究所碩士論文,中華民國九十九年七月
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code