Responsive image
博碩士論文 etd-0623113-160845 詳細資訊
Title page for etd-0623113-160845
論文名稱
Title
第一原理研究2D拓樸絕緣體在半導體基板
First-Principles Studies of 2D Topological Insulators on Semiconducting Substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-07
繳交日期
Date of Submission
2013-07-23
關鍵字
Keywords
非平凡態、拓樸態、第一原理、陳省身、h-BN、六角晶氮化硼、銻、鉍、雙層結構、沈呂九、Sb(111)、拓樸絕緣體、Bi(111)
Bi(111), Sb(111), single bilayer, first-principles calculations, antimony, hexagonal-BN, bismuth, Topological Insulator, Kohn-Sham, nontrivial state
統計
Statistics
本論文已被瀏覽 5706 次,被下載 780
The thesis/dissertation has been browsed 5706 times, has been downloaded 780 times.
中文摘要
過去研究已經證實,單獨的Bi 與Sb 雙層結構(bilayer)在應力(strain)下是二維(2D)拓樸絕緣體(Topological Insulator)材料。在本篇論文中,透過考慮自旋軌道耦合(spin-orbit coupling)的第一原理計算,研究受應力下的Bi(111)與Sb(111)雙層結構(bilayer)在不同半導體基板上的電子結構(electronic structures)與拓樸能帶(bandtopology)。我們發現當二維拓樸絕緣體放在Si(111)與Ge(111)基板,介面上會有電子的轉移,而使系統變為金屬。而二維拓樸絕緣體放在六角晶格結構氮化硼(hexagonal-BN)基板上,Bi(111)與Sb(111)可以保留應力下的反常拓樸態(non-trivial)與絕緣體性質。其中在六角晶格結構氮化硼 h-BN-√3×√3 重構系統穩定性高於六角晶格結構-BN-2×2 重構。因此我們認為六角晶格結構氮化硼為最佳候選基板,而以六角晶格結構氮化硼(h-BN)-√3×√3 來維持二維拓樸絕緣體較為穩定。
Abstract
Recent studies have shown that the single Bi and Sb bilayers are two dimensional topological insulators (2D TIs) under strains. In this study, electronic structures and band topology of the strained Bi(111) and Sb(111) single bilayers on three semiconducting or insulating substrates are investigated using first-principle calculations with spin-orbit coupling. First, charge transfer is found to be from the Si(111) and Ge(111) substrates which causes the system becomes meteallic. Moreover, hexagonal-BN can retain nontrivial topological insulating phase for the Bi(111) and Sb(111) single bilayer thin film at two different coverages. Finally, our stability analysis shows that 2D TIs on hexagonal-BN-√3×√3 is more stable than those on the hexagnal-BN-2×2. Therefore, hexagonal-BN-√3×√3 is an appropriate surperlattice structure to support the two-dimensional topological insulators.
目次 Table of Contents
摘要 .................................................................................................................................. i
Abstract ............................................................................................................................ iii
Figures ............................................................................................................................. vi
Tables .............................................................................................................................. ix
1. Introduction .................................................................................................................. 1
2. Theory and computational methods ............................................................................. 5
2.1 Density functional theory (DFT) ............................................................................ 5
2.1.1 Thomas-Fermi model ....................................................................................... 5
2.1.2 The Hohenberg-Kohn theorem......................................................................... 6
2.1.3 The Kohn-Sham equation with local spin density approximation (LSDA) and
generalized gradient approximation (GGA) .............................................................. 8
2.1.4 Spin-orbit coupling ......................................................................................... 10
2.2 The pseudopotential method ................................................................................. 13
2.2.1 Norm-conserving pseudopotential ................................................................. 13
2.2.2 Projector augmented waves (PAW) ............................................................... 15
2.3 Hellmann-Feynman theorem ................................................................................ 17
2.4 Van der Waals fouce density functionals.............................................................. 18
2.5 Topological insulator ............................................................................................ 18
2.6 Computational methods ........................................................................................ 21
3. Review of Bi and Sb bilayers ..................................................................................... 22
3.1 Atomic structures of Bi(111)/Sb(111) bi-layer thin films .................................... 22
3.2 Band structures of Bi(111) bi-layer thin films ...................................................... 23
3.3 Band structures of Sb(111) bi-layer thin films ..................................................... 27
4. Result and discussions : Bi bilayer on substrates .................................................. 30
4.1 Bi(111) bi-layer on h-BN √3×√3 substrates ......................................................... 32
4.2 Bi(111) bi-layer on h-BN 2×2 substrates .............................................................. 36
4.3 Bi(111) bi-layer on Si(111) 1×1 substrates ........................................................... 40
4.4 Bi(111) bi-layer on Ge(111) 1×1 substrates ......................................................... 44
5. Result and discussions:Sb bilayer on substrate ....................................................... 48
5.1 Sb(111) bi-layer on h-BN √3×√3 substrates ......................................................... 48
5.2 Sb(111) bi-layer on h-BN 2×2 substrates ............................................................. 52
5.3 Sb(111) bi-layer on Si(111) 1×1 substrates .......................................................... 56
5.4 Sb(111) bi-layer on Ge(111) 1×1 substrates ......................................................... 60
6. Discussion: Stability ................................................................................................... 64
7. Conclusion .................................................................................................................. 68
Bibliography ................................................................................................................... 69
參考文獻 References
[1] J. E. Moore, Nature 464, 194 (2010).
[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[3] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[5] B. A. Bernevig and S. C. Zhang, Phys.Rev. Lett. 96, 106802 (2006).
[6] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
[7] X. L. Qi, S. C. Zhang , Phys. Today 63(1), 33 (2010)
[8] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 ,(1982).
[9] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494, (1980).
[10] R. E. Prange, and S. M. Girvin, Il Nuovo Cimento B Series 11 109, 211 (1987).
[11] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[12] Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky,A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
[13] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).
[14] S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K. D. Lee, and N. Hur, Phys. Rev. B 81, 041405R (2010).
[15] Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).
[16] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).
[17] H. Lin, R. S. Markiewicz, L. A.Wray, L. Fu, M. Z. Hasan, and A. Bansil, Phys. Rev Lett 105, 036404 (2010).
[18] S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Science 332, 560 (2011).
[19] M. Neupane, S. Y. Xu, L. A. Wray, A. Petersen, R. Shankar, N. Alidoust, Chang Liu, A. Fedorov, H. Ji, J. M. Allred, Y. S. Hor, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Phys Rev B 85, 235406 (2012).
[20] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
[21] M. Konig et al., Science 318, 766 (2007).
[22] A. Roth et al., Science 325, 294 (2009).
[23] C. Liu, T. L. Hughes, X. L. Qi, K. Wang, S. C. Zhang, Phys. Rev. Lett. 100, 236601, (2008).
[24] I. Knez, R. R. Du, G.
[25] H. Z. Lu et al., Phys. Rev. B 81, 115407 (2010)
[26] C. X. Liu et al., Phys. Rev. B 81, 041307 (2010).
[27] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).
[28] M. Wada, S. Murakami, F. Freimuth, and G. Bihlmayer, Phys. Rev. B 83, 121310 (2011).
[29] Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Phys. Rev. Lett. 107, 136805 (2011).
[30] G. Bian, T. Miller, and T. C. Chiang Phys. Rev. Lett. 107 036802 (2011).
[31] P. F. Zhang, Z. Liu, W. Duan, F. Liu, and J. Wu, Phys. Rev. B 85 201410(R) (2012).
[32] F. C. Chuang, C. H. Hsu, C. Y. Chen, Z. Q. Huang, V. Ozolins, H. Lin, and A. Bansil, Appl. Phys. Lett. 102022424 (2013).
[33] L. H. Thomas, Proc. Cambridge Phil. Roy. Soc. 23, 542 (1927)
[34] E. Fermi, Rend. Accad. Naz. Lincei, 6, 602 (1927)
[35] M. Born and J. R. Oppenheimer, Ann. Physik, 84, 457 (1927)
[36] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
[37] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[38] B. H. Bransden and C. J. Joachain, Physics of atoms and molecules, Prentice Hall, (2003).
[39] M. Weissbluth, Atoms and Molecules, Academic Press (1978).
[40] D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
[41] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[42] M. C. Payn, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
[43] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993): G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996)
[44] W. Kohn and L. J. Sham, Phys. Rev. B 140, A1133 (1965)
[45]P. E. Blöchl, phys. Rev. B. 50 , 17953 (1994)
[46] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976)
[47] C. L. Kane and E. J. Mele, Science 314, 1692 (2006)
[48] C. L. Kane Nature Phys 4(5) 348 (2008)
[49] F. Z. Bloch, Phys. 52, 555, (1929).
[50] L. Fu and C.L. Kane, Phys. Rev. B, 74 195312 (2006)
[51] X. Gonze, J.-P. Michenaud and J.P. Vigneron, Phys. Rev. B 41, 11827 (1990).
[52] B. J. Yang, M. S. Bahramy, N. Nagaosa, arXiv: 1212.5598 (2012).
[53] J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
[54] J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).
[55] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code