Responsive image
博碩士論文 etd-0623114-153930 詳細資訊
Title page for etd-0623114-153930
論文名稱
Title
以滴濾式生物濾床法去除排氣中之丙二醇甲醚醋酸酯(PGMEA)之研究
Study on the biotrickling-biofiltration treatment of gas-borne propylene glycol methyl ether acetate (PGMEA)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-20
繳交日期
Date of Submission
2014-07-23
關鍵字
Keywords
丙二醇甲醚醋酸酯、揮發性有機物、生物處理法、生物濾床
propylene glycol monomethyl ether acetate (PGMEA), wood chips, Biofilter, Volatile organic compounds (VOCs)
統計
Statistics
本論文已被瀏覽 5648 次,被下載 810
The thesis/dissertation has been browsed 5648 times, has been downloaded 810 times.
中文摘要
在產業製作過程中,常使用大量揮發性有機物(volatile organic compound, VOCs),其處理方法包括:物理處理法、化學處理法、生物處理法。本研究選用生物處理法,以單一填充濾料(造紙廠木屑)之滴濾式生物濾床處理排氣中之丙二醇甲醚醋酸酯PGMEA,具有改善傳統混合堆肥之生物濾床易阻塞、壓密及結塊等缺點,具設置操作成本較經濟之優點。
滴濾式生物濾床主體為0.8公分厚壓克力板,濾床主體高度為73公分,由六層正方形槽體組成,每層高度為8公分,內尺寸為40公分×40公分,其內以不植種之木屑作為濾料介質填充,木屑尺寸約為2×4公分,比表面積為220 m2/m3,濾床中每層填充高度為4公分,濾料總體積為38.4公升。
實驗期間為2012年7月24日至2014年4月28日,每週採集兩次氣樣分析VOC,和循環水pH值,每週採集一次固樣(濾料)及液樣(循環水),進行VOC分析,探討空塔停留時間(EBRT)、體積有機負荷L (Organic loading)等對VOC去除率之影響。
研究結果顯示:(1)此造紙廠木屑為良好的濾床填充介質,保水性佳,為微生物良好載體,不易發生短流、壓密和結塊現象。(2)在L<60 g/m3h之範圍內,生物濾床對總VOC之平均去除率為78.9%;在L=70-500 g/m3h之範圍內,生物濾床對總VOC之平均去除率為81.6%。(3)廢氣排放量200-613 L/min,EBRT=3.8-11.5s,進氣濃度為2.30-809 mg/m3,有機負荷為0.7-306 g/m3h,總平均去除率可達96.8%。(4)添加保久乳及果糖有助於整體VOC去除率的提升,其COD:N:P為5000:5:1,其中化學需氧量(COD)為PGMEA質量換算;保久乳添加量為98 mL/m3 day,果糖添加量為66 g/m3.day。
在經濟評估方面,當滴濾式生物濾床之進氣流量為1000 Am3/min @27oC,進氣PGMEA濃度<120 mg/Am3,欲將去除率控制>80%以上,以每1,000 Am3排氣做計算,電力成本加上藥品成本合計為1.61 NTD/(103 Nm3)。
Abstract
Industrial applications of organic solvents would emit large quantities of volatile organic compounds (VOCs) into the atmospheric environment. Biotreatment for air pollution control can generally be categorized as biofiter, biotrickling filter and bioscrubbing systems. This study armed to develop a biotrickling-biofilter packed only with wood chips for the removal of air-borne propylene glycol monomethyl ether acetate (PGMEA). The wood chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters.
The test biofilter was a six stage up-flow biofilter made of transparent acrylic resin for observation of the media during the test. The biofilter was packed with a total of 38.4 liters (160 cm sq.×4 cmH×6 stage) of wood chips for pulp manufacturing with an average size of around 2×4cm.
The investigation period was from July, 2012 to April, 2014. In the period, compositions of the VOCs in gas samples were anayzed by a gas chromatography equipped with a flame ionization detector (FID) twice a week. At the gas-sampling time, pH of the trickled liquid from the media was detected. Effects of gas empty-bed-residence time (EBRT) and the volumetric loading (L) of PGMEA to the biofitration media on its removal efficiency were tested.
Results indicate that the wood chips is a suitable media for the attachment of biofilms for the degradation of PGMEA transferred from the influent gas stream. With a L of less than 60 g/m3h, 78.9% of the influent PGMEA could be removed, and with L in the range of 70-500 g/m3h, 81.6% of the influent PGMEA was removed. With EBRT of 3.8-11.5s, influent PGMEA concentrations of 2.30-809 mg/m3 and L of 0.7-306 g/m3h, 96.8% of the influent PGMEA could be removed. Inorganic nitrogen (ammonia N) and phosphorus (phosphate P) were also added to the filter at a ratio of COD:N:P of 5000:5:1, where COD is the chemical oxygen demand of the influent mass of PGMEA to the filter. In addition, milk and fructose were essential to a good and stable performance of the biotrickling-biofiltration for PGMEA removal. The suitable milk dosage was 98 mL/m3 day and the fructose dosage was 66 g/m3.day.
An economic analysis indicates that it costs 1.68 NTD for the removal of 80% of PGMEA in 103 Am3 (@27oC) of the gas with PGMEA concentrations of less than 120 mg/Am3.
目次 Table of Contents
論文審定書 i
謝誌 iii
摘要 v
Abstract vii
目錄 ix
圖目錄 xii
表目錄 xiv
第一章 前言 1
1.1 研究背景及動機 1
1.2 研究目的及內容 2
第二章 文獻回顧 3
2.1 VOCS定義及排放來源 3
2.2 VOCS之危害 4
2.3 VOCS控制技術 5
2.4 生物處理技術 9
2.4.1生物洗滌法 11
2.4.2生物滴濾塔法 11
2.5 生物濾床處理技術 11
2.6 影響生物濾床處理效能介紹 15
2.6.1濾料水份 15
2.6.2 濾料pH值 15
2.6.3 濾床溫度 16
2.6.4 營養鹽 16
2.6.5 微生物菌相 16
2.6.6 污染負荷 17
2.7 生物濾床處理技術相關文獻 17
2.8 國內相關研究文獻 21
2.8.1 以生物濾床去除PGMEA之可行性 21
2.8.2造紙木片濾料生物濾床(EBRT低於2.0秒)控制含低濃度PGMEA排氣(吳靜怡,2013) 22
2.8.3 以生物濾床處理排氣中之丙二醇甲醚醋酸酯(PGMEA) (彭筱婷,2005) 23
2.8.4 以生物濾床處理門窗廠排放之VOCs (張筱瑜,2013) 23
2.8.5 以生物濾床處理排氣中之異丙醇(IPA) (江欽文,2005) 24
2.8.6 以生物濾床處理模擬晶圓製程排氣(李尚娟,2006) 25
第三章 設備、材料及方法 27
3.1實驗設備 27
3.1.1生物濾床主體 28
3.1.2進氣系統 29
3.1.3 循環水營養鹽供給系統 30
3.2實驗材料 31
3.2.1濾料 31
3.2.2藥品 35
3.3實驗方法 36
3.3.1微生物之馴養 36
3.3.2 操作條件 37
3.4 生物濾床操作維護 40
3.5 採樣及分析 41
3.5.1 採樣設備及方法 41
3.5.2 分析儀器、方法及項目 41
第四章 結果與討論 45
4.1 濾床各項操作參數之影響 45
4.2 生物濾床PGMEA與PGME濃度及總去除率變化 48
4.3 生物濾床PGMEA濃度與去除率 56
4.4 排氣PGME產生量對生物濾床之影響 59
4.4.1 排氣PGME產生量與總去除率關係 59
4.5 營養鹽添加對生物濾床之影響 62
4.6 循環水、濾料濃度與出口VOC濃度變化 65
4.7 進出口氣體溫度變化 67
4.8 有機負荷對生物濾床之影響 69
4.8.1 有機負荷變化 69
4.8.2 有機負荷與去除率關係 73
4.9 生物濾床經濟評估(以進氣VOC濃度依實際值為設計基準) 77
第五章 結論與建議 81
5.1 結論 81
5.2 建議 83
參考文獻 85
附錄 91
參考文獻 References
1. Akdeniz, B., Akdeniz, N., Janni, K. A., Salnikov, I. A. (2011). Biofilter performance of pine nuggets and lava rock as media. Bioresource Technology, 102, 4974-4980.
2. Bohn, H. L., iofiltration: Design Principles and Pitfall. Air & Waste Management Association Conference & Exhibition, 86th, Annual Meeting & Exhibition, 1993.
3. Burgess, J. E., Parsons, S. A., Stuetz R. M. (2001). Developments in odour control and waste gas treatment biotechnology: a review. Biotechnology Advances, 19, 35-63.
4. Bina, B., Dehghanzadeh, R., Pourmoghadas, H., Kalantary, A., Torkian, A., (2004). Removal of styrene from waste gas stream using a biofilter. Journal of Research in Medical Sciences, 6, 280-288.
5. Calabrese, E. J., and Kenyon, E. M., (1991) Air toxics and risk assessment. Lewis Publishers.
6. Chou, M.S., Shiu W.Z., (1997). Bioconversion of Methylamine in Biofilters from Air & Waste Manage Assoc.47, pp.58-65.
7. Chou, M.S., Chang Y. F., and Perng, H. T., (2008): Treatment of PGMEA in air stream by a biofilter packed with fern chips. J. Air and Waste Manage. Asso. 58, 1590-1597.
8. Chen, L., Hoff, S., Cai, L., Koziel, J., and Zelle, B., (2009) Evaluation of Wood Chip-Based Biofilters to Reduce Odor, Hydrogen Sulfide, and Ammonia from Swine Barn Ventilation Air, J. Air & Waste Manage. Assoc., 59, 520-530.
9. Devinny, J. S., and Hodge, D. S., (1995) Formation of Acidic and Toxic Intermediates in Overloaded Ethanol Biofilter. Journal of the Air & Waste Management Association, Vol. 45, pp. 125-131.
10. Devinny, J. S., Marc A. Deshusses, Todd S. W. (2002). Biofiltration for air pollution control. Lewis Publishers Co., 17-48.
11. Domoradzki, J Y., Brzak, K. A.;and Thornton, C. M., (2003) Hydrolysis kinetics of propylene glycol monomethyl ether acetate in rats in vivo and in rat and human tissues in vitro. Toxicological sciences : an official journal of the Society of Toxicology.
12. Ergas, S. J., Schroeder, E. D., Chang, D. P., and Morton, R. L., (1995). Control of volatile organic compound emssions using a compost biofilter. Water Environment Research, 67(5), 816-821.
13. Easter, C., Quigley, C., Burrowes, P., Witherspoon, J. and Apgar, D., Odor (2005). Air emissions control using biotechnology for both collection and wastewater treatment systems. Chemical Engineering Journal, 113, 93-104.
14. Girard, M. A., Ramirez, A., Buelna, G., Heitz, M., (2011). Biofiltration of methane at low concentrations representative of the piggery industry—Influence of the methane and nitrogen concentrations. Chemical Engineering Journal, 168, 151-158.
15. Gallastegui, G., Barona, A., Rojo, N., Gurtubay, L., and Elias, A. (2013). Comparative response of two organic biofilters treating ethylbenzene and toluene after prolonged exposure. Process Safety and Environmental Protection, 91, 112-122.
16. Hort, C. Gracy, S. V., and Moynault, P. L., (2013). A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds (RSCs) by biofiltration: Application at industrial scale. Waste Management, 33, 18-25.
17. Liu, Y., Quan, X., Zhao, Y., Chen, S., and Zhao, H., (2005). Removal of ternary VOCs in air streams at high loads using a compost-based biofilter. Biochemical Engineering Journal, 23, 85-95.
18. Liua, J., and Ma, W., (2011). Odor and VOCs Removal in Wastewater Treatment Plant by a Two-stage Biofilter. Energy Procedia, 11, 2553-2560.
19. Lee, S. H., Li, C., and Heber, A. J., (2012). The effect of nitrate on ethylene biofiltration. Journal of Hazardous Materials 241-242, 331-339.
20. Lebrero, R., Gabriela, M., Rangel, L., and Muñoz, R., (2013). Characterization and biofiltration of a real odorous emission from wastewater treatment plant sludge. Journal of Environmental Management, 116, 50-57.
21. Pratt, C., Walcroft, A. S., Tate, K. R., Ross, D. J., Roy, R., Reid, M. H., and Veiga, P. W., (2012). Biofiltration of methane emissions from a dairy farm effluent pond. Agriculture, Ecosystems and Environment, 152, 33-39.
22. Ramirez-Lopez, E. M., Corona-Hernandez, J., Avelar-Gonzalez, F.J., Omil, F., and Thalasso, F., (2010). Biofiltration of methanol in an organic biofilter using peanut shells as medium. Bioresource Technology, 101, 87-91.
23. Veillette, M., Viens, P., Ramireza, A. A., Brzezinski, R., and Heitz, M., (2011) Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chemical Engineering Journal, 171, 1114-1123.
24. Webster, T. S., and Devinny, J. S., (1996). Biofiltration of Odors, Toxics and Volatile Organic Compounds from Publicly Owned Treatment Works. Environmental Progress, 15, 3, 141-147.
25. Yang, C., Suidan, M .T. Zhu, X., Kim, B. J., and Zeng, G., (2008). Effect of gas empty bed contact time on performances of various types of rotating drum biofilters for removal of VOCs. Water research, 42, 3641-3650.
26. Zamir, M., Halladj, R., Sadraei, M., and Nasernejad, B., (2012). Biofiltration of gas-phase hexane and toluene mixture under intermittent loading conditions. Process Safety and Environmental Protection, 90, 326-332.
27. 王嘉禧(1999),「以生物滴濾塔處理排氣中氨之操作性能研究」,國立中山大學環境工程研究所碩士論文。
28. 林文川(2009),「製成VOCs廢棄之收集與處理」,工業污染防治,第110期,第104-172頁。
29. 李尚娟(2006),「以蛇木屑生物濾床處理模擬晶圓製程排氣中揮發性有機物之研究」,國立中山大學環境工程研究所碩士論文。
30. 周明顯(2007),「臭味及揮發性有機物控制」,國立中山大學出版,中華民國九十六年十二月。
31. 周明顯、李尚娟:開發蛇木屑濾料生物濾床去除排氣中混合揮發性有機物,行政院國家科學委員會專題補助研究計畫成果報告(NSC 95-2211-E-110-041-),執行期間:95年8月1日至96年7月31日。
32. 周明顯、張筱瑜、黃靜儀、李尚娟、曾嘉玲:以滴濾式蛇木屑生物濾床去除事業排氣臭味,行政院國家科學委員會專題補助研究計畫成果報告(NSC 96-2628-E-110 -004 -MY3),執行期間:96年8月1日至99年7月31日。
33. 彭筱婷(2005),「以生物濾床處理排氣中乙酸甲氧基異丙酯(PGMEA)之操作性能研究」,國立中山大學環境工程研究所碩士論文。
34. 曾嘉玲(2010),「以實廠蛇木屑生物濾床處理溶劑製程排氣之操作性能研究」,國立中山大學環境工程研究所碩士論文。
35. 張鈺峰(2009),「以生物處理法處理丙二醇甲醚醋酸酯(PGMEA)與甲苯之研究」,國立中山大學環境工程研究所博士論文。
36. 經濟部工業局,(2004),「揮發性有機物減量及處理技術手冊」。
37. 行政院環境保護署公告固定污染源空氣污染排放標準。
38. 行政院勞工委員會勞工安全衛生研究所,物質安全資料表。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code