Responsive image
博碩士論文 etd-0623115-001116 詳細資訊
Title page for etd-0623115-001116
論文名稱
Title
以光子晶體光纖錯位熔接之Mach-Zehnder光纖干涉儀製作光纖雷射感測器
Fiber Laser Sensor using PCF-based Mach-Zehnder Interferometer Formed by Misalinged Splicing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
光纖雷射感測器、光纖雷射、光纖感測器、Mach-Zehnder干涉儀、光子晶體光纖
fiber laser sensor, fiber laser, fiber sensor, Photonic crystal fiber, Mach-Zehnder interferometer
統計
Statistics
本論文已被瀏覽 5691 次,被下載 627
The thesis/dissertation has been browsed 5691 times, has been downloaded 627 times.
中文摘要
利用光纖干涉儀所製作的感測器因為具有體積小、成本低以及不受電磁波干擾等優點,因此近年來被廣泛提出及應用。然而,由於光纖干涉儀之干涉頻譜較寬且消光比較小,因此會限制量測的精準度。在本論文中,我們成功地利用錯位熔接光子晶體光纖與單模光纖的方式製作出光子晶體光纖Mach-Zehnder干涉儀(PCF-based MZI),並進一步將此PCF-based MZI置入摻鉺光纖雷射的環型共振腔中,以形成光纖雷射感測器。利用錯位熔接的方式,我們可以在光子晶體光纖中同時激發出core mode和cladding mode,由於兩個模態之間的有效折射率不同,因此會產生相位差,當這兩個模態被耦合回單模光纖時便能得到干涉頻譜。我們將PCF-based MZI置入摻鉺光纖雷射的環形共振腔中形成光纖雷射感測器,相較於MZI之干涉頻譜,PCF-based MZI光纖雷射感測器的輸出有很大的訊雜比(40dB)以及很窄的線寬(<1nm),因此能夠提高量測的精準度。
我們利用製作出的PCF-based MZI光纖雷射感測器進行外在溫度、曲率以及外在環境折射率的感測。由量測結果可知,當外在環境溫度變化從30oC至150oC
時,雷射頻譜之變化量很小,經計算後可得其溫度敏感度約為5pm/oC。而將MZI彎曲使其曲率變化由0.6925m-1至3.096m-1時,PCF-based MZI雷射感測器的雷射波長會呈現指數增加的趨勢。此外,隨著外在環境折射率由1.3388增加至1.3638時,雷射頻譜會呈現往長波長位移的現象,其折射率敏感度約為52.35nm/RIU。由結果得知,我們所提出的PCF-based MZI光纖雷射感測器可以進行不同參數的感測,且由於其具有很大的訊雜比及很窄的線寬,因此能夠提高量測精準度。
Abstract
Optical sensors based on fiber interferometers have been investigated extensively due to their significant advantages of compact size, low cost and immunity to electromagnetic interference. However, their accuracy is poor due to the broad 3-dB bandwidth and low extinction ratio of the interference spectrum. In this dissertation, we fabricate a fiber Mach-Zehnder interferometer (MZI) by splicing a photonic crystal fiber (PCF) with SMFs with an offset. Due to the misalignment of the two fibers, the input light from the SMF will induce the core mode and cladding mode of the PCF with different propagation velocities. These two modes are coupled back to the other SMF to form the interference spectrum due to the accumulated phase difference. We then place the PCF-based MZI into an erbium-doped fiber ring laser to form the fiber laser sensor. Compared with the spectrum of the PCF-based MZI, the lasing peak of the fiber laser sensor has high signal to noise ratio (40dB) and narrow 3-dB bandwidth (<1nm), which can enhance the sensing accuracy.
We have demonstrated the sensing properties of our PCF-based MZI fiber laser sensor for temperature, bending curvature and surrounding refractive index. The temperature sensitivity of the PCF-based MZI fiber laser sensor is about 5pm/oC between 30oC to 150oC. As we increase the bending curvature from 0.6925m-1 to 3.096m-1, it is observed that the lasing wavelength is exponentially increased. In addition, the measured refractive-index sensitivity is about 52.35nm/RIU as the surrounding refractive index is varied from 1.3388 to 1.3638. As a result, our proposed PCF-based MZI fiber laser sensors can be utilized as useful sensors which have high signal to noise ratio and narrow 3-dB bandwidth to enhance the sensing accuracy.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 光纖感測器 1
1-2 光子晶體光纖干涉儀 6
1-3 研究動機 14
第二章 錯位熔接Mach-Zehnder光纖干涉儀 15
2-1 Mach-Zehnder光纖干涉儀的原理 15
2-2 元件製作方法 20
2-2.1 光纖介紹 20
2-2.2 元件製作 21
2-3 元件特性量測與分析 26
第三章 PCF-based MZI摻鉺光纖雷射感測器 34
3-1 摻鉺光纖 34
3-2 光纖雷射感測器 37
3-2.1 摻鉺光纖雷射 37
3-2.2 摻鉺光纖雷射感測器 39
3-3 PCF-based MZI雷射感測器之雷射特性曲線量測 41
3-3.1 摻鉺光纖雷射架構及量測 41
3-3.2 PCF-based MZI光纖雷射之雷射特性量測 44
3-3.3 PCF-based MZI光纖雷射之穩定度 49
第四章 感測特性及量測 50
4-1 溫度感測特性 50
4-2 曲率感測特性 56
4-3 折射率感測特性 61
第五章 結論 69
參考文獻 70
參考文獻 References
[1] J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express, vol. 15, pp. 1491-1496, 2007.
[2] D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cárdenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightw. Technol., vol. 28, pp. 3542-3547, 2010.
[3] J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” J. Sens., vol. 2009, pp. 1-11, 2009.
[4] G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000℃,” Opt. Express, vol. 17, pp. 21551-21559, 2009.
[5] J. Brooks, R. Wentworth, R. Youngquist, M. Tur, and H. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightw. Technol., vol. 3, pp. 1062-1072, 1985.
[6] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightw. Technol., vol. 15, pp. 1442-1463, 1997.
[7] C-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightw. Technol., vol. 26, pp. 220-227, 2008.
[8] L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett., vol. 36, pp. 3753-3755, 2011.
[9] E. Hecht, Optics, 4th ed. Addison-Wesley, New York, 2001.
[10] J. H. Lim, H. S. Jang, and K. S. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett., vol. 29, pp. 346-348, 2004.
[11] R. Kashyap and B. Nayar, “An all single-mode fiber michelson interferometer sensor,” J. Lightw. Technol., vol. LT-1, pp. 619-624, 1983.
[12] H-M. Kim, T-H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 22, pp. 1539-1541, 2010.
[13] B. Dong, J. Hao, C-Y. Liaw, and Z. Xu, “Cladding-mode resonance in polarization-maintaining photonic-crystal-fiber-based sagnac interferometer and its application for fiber sensor,” J. Lightw. Technol., vol. 29, pp. 1759-1763, 2011.
[14] J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber etalon for strain measurement,” Opt. Lett., vol. 18, pp. 1973-1975, 1993.
[15] S-H. Kim, J-J. Lee, D-C. Lee, and I.-B. Kwon, “A study on the development of transmission-type extrinsic Fabry-Pérot interferometric optical fiber sensor,” J. Lightw. Technol., vol. 17, pp. 1869-1874, 1999.
[16] X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Pérot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett., vol. 27, pp. 1388-1390, 2002.
[17] V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Pérot sensors in silica fibres using hydrofluoric acid etching,” Sens. and Actuators A, Phys., vol. 138, pp. 248-260, 2007.
[18] J-R. Zhao, X-G. Huang, W-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry-Pérot interference,” J. Lightw. Technol., vol. 28, pp. 2799-2803, 2010.
[19] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547-1549, 1996.
[20] B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightw. Technol., vol. 27, pp. 1617-1630, 2009.
[21] D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightw. Technol., vol. 24, pp. 3427-3432, 2006.
[22] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. Sandro, “Large mode area photonic crystal fibre,” IEEE Electron Lett., vol. 34, pp. 1347-1348, 1998.
[23] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807-809, 2000.
[24] W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett., vol. 16, pp. 843-845, 2004.
[25] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 1325-1327, 2000.
[26] T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express, vol. 11, pp. 2589-2596, 2003.
[27] W. N. Macpherson, M. J. Gander, R. Mcbride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenway, B. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Remotely addressed optical fibre curvature sensor using muticore photonic crystal fibre,” Opt. Commun., vol. 193, pp. 97-104, 2001.
[28] F. Tian, Z. He, and H. Du, “Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media,” Opt. Lett., vol. 37, pp. 380-382, 2012.
[29] J. Ju, W. Jin, and H. L. Ho, “Compact in-fiber interferometer formed by long-period gratings in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 20, pp. 1899-1901, 2008.
[30] A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, “Observation of mode coupling in bitapered air-core photonic bandgap fibers,” Opt. Commun., vol. 271, pp. 391-395, 2007.
[31] D. Monzón-Hernández, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett., vol. 18, pp. 511-513, 2006.
[32] V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,,” Opt. Express, vol. 13, pp. 7609-7614, 2005.
[33] J. Villatoro, V. P. Minkovich, and M.-H. David, “Temperature-independent strain sensor made from tapered holey optical fiber,” Opt. Lett., vol. 31, pp. 305-307, 2006.
[34] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, pp. 5711-5719, 2007.
[35] R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett., vol. 34, pp. 617-6119, 2009.
[36] T. Li, X. Dong, C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J., vol. 13, pp. 2214-2216, 2013.
[37] J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett., vol. 91, p. 091109, 2007.
[38] M. Deng, C-P. Tang, T. Zhu, and Y-J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, pp. 2849-2853, 2011.
[39] W. Tingting, W. Ming, and N. Haibin, “Micro-Fabry-Pérot interferometer with high contrast based on an in-fiber ellipsoidal cavity,” IEEE Photon. Technol. Lett., vol. 24, pp. 948-950, 2012.
[40] M. Deng, C-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photon. Technol. Lett., vol. 23, pp. 700-702, 2011.
[41] Z-B. Liu, Y. Li, Y. Liu, Z-W. Tan, and S. Jian, “A static axial strain fiber ring cavity laser sensor based on multi-modal interference,” IEEE Photon. Technol. Lett., vol. 25, pp. 2050-2053, 2013.
[42] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express, vol. 16, pp. 11369-11375, 2008.
[43] D. Malacara, M. Servin, and Z. Malacara, Interferogram analysis for optical testing. Taylor & Francis Group, New York, 2005.
[44] L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Optics & Laser Technol., vol. 57, pp. 39-43, 2014.
[45] S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett., vol. 21, pp. 737-738, 1985.
[46] R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett., vol. 21, pp. 738-740, 1985.
[47] M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE J. Quant. Electron., vol. 7, pp. 55-58, 2001.
[48] M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55pm-band and a 1.58p.mband Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, pp. 710-711, 1997.
[49] P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, and B. Y. Kim, “Comparison of 1.48-um and 980-nm pumping for Er-doped superfluorescent fiber sources,” SPIE Fiber Laser Sour. and Ampl., vol. 1581, pp. 40-58, 1991.
[50] K. E. Alameh, R. A. Minasian, and Y. Zhao, “A numerical model for the complex susceptibility of saturated Erbium-doped amplifiers,” IEEE J. Quant. Electron., vol. 33, pp. 855-860, 1997.
[51] N. Kumar, M. R. Shenoy, and B. P. Pal, “A standard fiber-based loop mirror as a gain-flattening filter for Erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 17, pp. 2056-2058, 2005.
[52] S-K. Liaw and G.-S. Jhong, “Tunable fiber laser using a broad-band fiber mirror and a tunable FBG as laser-cavity ends,” IEEE J. Quant. Electron., vol. 44, pp. 520-527, 2008.
[53] M. K. Rahman, S. Selvakennedy, P. Poopalan, and H. Ahmad, “Operating wavelength of Erbium‐doped fiber‐ring laser,” Microw. Opt. Technol. Lett., vol. 31, pp. 105-107, 2001.
[54] G. A. Ball, G. Meltz, and W. W. Morey, “Polarimetric heterodyning bragg-grating fiber-laser sensor,” Opt. Lett., vol. 18, pp. 1976-1978, 1993.
[55] R. S. Quimby, Photonic and lasers. John Wiley & Sons, New Jersey, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code