Responsive image
博碩士論文 etd-0623115-110023 詳細資訊
Title page for etd-0623115-110023
論文名稱
Title
利用水熱合成法製備氧化銅奈米粒子及表面增強拉曼應用
Hydrothermal synthesis of copper oxide nanostructures and surface-enhanced raman spectroscopy applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
表面增強拉曼散射、水熱合成法、氧化銅
SERS, Hydrothermal method, Copper oxide
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
近年奈米金屬氧化物引起很大的關注並且廣泛地應用各領域中,分別在增強拉曼散射( SERS )、催化劑、電池、太陽能轉換器或生物感測器…等,許多關於氧化銅奈米材料的報導,透過不同的合成方式,CuO奈米結構具有不同的形狀與大小,例如:奈米棒、奈米線、奈米管。而CuO是一個p-type的半導體具有窄的能隙( band gap ) 1.2 eV。本次實驗我們利用水熱合成法( hydrothermal method )合成出三種不同的構型( Echinus、Flower &Rod ),並且利用X射線繞射分析儀( XRD )驗證是否有合成出CuO以及使用掃描式電子顯微鏡( SEM )觀測CuO的形貌,又以高分辨穿透式電子顯微鏡( HRTEM )觀察氧化銅的晶格。本篇將氧化銅應於兩個部分。我們藉由固定硝酸銀濃度並調整硝酸銀與氧化銅的反應時間,合成CuO-Ag粒子,作為SERS基材。以4-aminothiophenol( 4-ATP )作為待測分子。相較於單純氧化銅作為基材,CuO-Ag粒子可以有效地增強ATP的訊號,而Echinus的偵測極限可達10-7 M。
Abstract
In recent years, many researchers have paid attention to metal oxide nanoparticles and widely utilize in various fields, including Surface-Enhanced Raman Scattering (SERS), catalysis, batteries, solar energy conversion and bio-sensors, etc. It is reported that nanoscale copper oxide (CuO) with different shapes and size, such as nanorods, nanowires and nanotudes have been synthesized using numerous methodologies. CuO is a p-type semiconductor with a narrow band gap of 1.2eV. In this experiment, we synthesized three different structures (Echinus、Flower & Rod). X-ray diffraction (XRD) was used to characterize the structure and used scanning electron microscope (SEM) to observe CuO morphology. Then, high-resolution transmission electron microscopy (HRTEM) was surveyed CuO lattice space. We synthesized CuO-Ag particles as SERS substrate by fixing the concentration of silver nitrate and adjusting the reaction time. 4-ATP was selected as the probe molecule to investigate the SERS properties of the obtained substrates. Campared with pure CuO as SERS substrates, CuO-Ag particles can effectively enhance the ATP signal, and Echinus structure’s detection limit of up to 10-7 M.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第壹章、 緒論 1
1-1 金屬氧化物 1
1-2 氧化銅製成方法 4
1-3 研究動機 8
第貳章、 儀器原理 9
2-1 拉曼光譜儀 9
2-1-1 拉曼散射理論 9
2-1-2 拉曼散射 12
2-3 比表面積氣體吸附分析 15
2-3-1 等溫吸附曲線之遲滯現象 18
2-4 穿透式電子顯微鏡 20
2-5 掃描式電子顯微鏡 21
2-6 X光光電子能譜 23
2-8 分析儀器 26
第參章、 奈米銀修飾不同構型氧化銅增強拉曼訊號之研究 28
3-1 前言 28
3-2 文獻回顧 31
3-2-1 表面增強拉曼散射 31
3-2-2 電磁增強機制 ( electromagnetic enhancement effect ) 31
3-2-3 化學增強機制 ( chemical enhancement effect ) 34
3-2-4 熱點 36
3-3 實驗部分 38
3-3-1 實驗藥品 38
3-3-2 實驗步驟 38
3-4 實驗結果 40
3-4-1 氧化銅奈米粒子的特徵分析 40
3-4-2 氧化銅奈米粒子表面修飾上銀的特徵分析 47
3-4-3 Ag-CuO的最佳製備條件 53
3-4-4 最低偵測極限 55
3-5 討論 57
3-6 結論 62
第肆章、 結論 63
第伍章、 參考文獻 64
參考文獻 References
1. Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 2014, 60, 208-337.
2. Singh, D. P.; Ali, N., Synthesis of TiO2 and CuO nanotubes and nanowires. Sci. Adv. Mater. 2010, 2 (3), 295-335.
3. Anandan, S.; Yang, S., Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies–an overview. J. Exp. Nanosci. 2007, 2 (1-2), 23-56.
4. MacDonald, A. H., Superconductivity: copper oxides get charged up. Nature 2001, 414 (6862), 409-410.
5. Bednorz, J. G.; Müller, K. A., Possible highT c superconductivity in the Ba− La− Cu− O system. Z. Phys. B 1986, 64 (2), 189-193.
6. Boebinger, G.; Ando, Y.; Passner, A.; Kimura, T.; Okuya, M.; Shimoyama, J.; Kishio, K.; Tamasaku, K.; Ichikawa, N.; Uchida, S., Insulator-to-metal crossover in the normal state of La 2-x Sr x CuO 4 near optimum doping. Phys. Rev. Lett. 1996, 77 (27), 5417.
7. Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T., Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano reviews 2011, 2, 5883_1-5883_62.
8. Song, M.-K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M., Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng., R 2011, 72 (11), 203-252.
9. Kislyuk, V.; Dimitriev, O., Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 2008, 8 (1), 131-148.
10. Choi, K. J.; Jang, H. W., One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 2010, 10 (4), 4083-4099.
11. Rahman, M. M.; Ahammad, A.; Jin, J.-H.; Ahn, S. J.; Lee, J.-J., A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10 (5), 4855-4886.
12. Zhou, L.-P.; Wang, B.-X.; Peng, X.-F.; Du, X.-Z.; Yang, Y.-P., On the specific heat capacity of CuO nanofluid. Adv. Mech. Eng. 2009, 2010.
13. Wang, S.; Hsiao, C.; Chang, S.; Lam, K.; Wen, K.; Hung, S.; Young, S.; Huang, B., A CuO nanowire infrared photodetector. Sensors and Actuators A: Physical 2011, 171 (2), 207-211.
14. Liu, J.; Jin, J.; Deng, Z.; Huang, S.-Z.; Hu, Z.-Y.; Wang, L.; Wang, C.; Chen, L.-H.; Li, Y.; Van Tendeloo, G., Tailoring CuO nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci. 2012, 384 (1), 1-9.
15. Ali, I., New generation adsorbents for water treatment. Chem. Rev. 2012, 112 (10), 5073-5091.
16. Yu, X.-Y.; Xu, R.-X.; Gao, C.; Luo, T.; Jia, Y.; Liu, J.-H.; Huang, X.-J., Novel 3D hierarchical cotton-candy-like CuO: surfactant-free solvothermal synthesis and application in As (III) removal. ACS Appl. Mater. Interfaces 2012, 4 (4), 1954-1962.
17. Woodhouse, M.; Parkinson, B., Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38 (1), 197-210.
18. Van Zeghbroeck, B., Principles of semiconductor devices. Colarado University 2004.
19. Huang, H.; Yu, Q.; Ye, Y.; Wang, P.; Zhang, L.; Gao, M.; Peng, X.; Ye, Z., Thin copper oxide nanowires/carbon nanotubes interpenetrating networks for lithium ion batteries. CrystEngComm 2012, 14 (21), 7294-7300.
20. Filipič, G.; Cvelbar, U., Copper oxide nanowires: a review of growth. Nanotechnology 2012, 23 (19), 194001.
21. Ferraro, J. R., Introductory raman spectroscopy. Academic press: 2003.
22. Colthup, N., Introduction to infrared and Raman spectroscopy. Elsevier: 2012.
23. Nasdala, L.; Smith, D. C.; Kaindl, R.; Ziemann, M. A., Raman spectroscopy: analytical perspectives in mineralogical research. na: 2004.
24. Aroca, R., Surface-enhanced vibrational spectroscopy. John Wiley & Sons: 2006.
25. Lowell, S., Characterization of porous solids and powders: surface area, pore size and density. Springer Science & Business Media: 2004; Vol. 16.
26. 林文清. 微晶纖維素廢料之活性碳熱裂解資源化研究. 國立中央大學, 桃園縣, 2007.
27. Everett, D., Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 1972, 31 (4), 577-638.
28. Williams, D. B.; Carter, C. B., The transmission electron microscope. Springer: 1996.
29. Aromal, S. A.; Vidhu, V.; Philip, D., Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta, Part A 2012, 85 (1), 99-104.
30. McMullan, D., Scanning electron microscopy 1928–1965. Scanning 1995, 17 (3), 175-185.
31. Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Romig Jr, A. D.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Business Media: 2012.
32. Pal, J.; Ganguly, M.; Dutta, S.; Mondal, C.; Negishi, Y.; Pal, T., Hierarchical Au–CuO nanocomposite from redox transformation reaction for surface enhanced Raman scattering and clock reaction. CrystEngComm 2014, 16 (5), 883-893.
33. Andrade, J. D., X-ray photoelectron spectroscopy (XPS). In Surface and interfacial aspects of biomedical polymers, Springer: 1985; pp 105-195.
34. Chusuei, C. C.; Goodman, D. W., X-ray photoelectron spectroscopy. Encyclopedia of physical science and technology 2002, 17, 921-938.
35. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題 1994.
36. Wang, X.; Shi, W.; She, G.; Mu, L., Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. PCCP 2012, 14 (17), 5891-5901.
37. Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J., Multifunctional Au‐Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Adv. Funct. Mater. 2010, 20 (17), 2815-2824.
38. Baia, M.; Melinte, G.; Barbu-Tudoran, L.; Diamandescu, L.; Iancu, V.; Cosoveanu, V.; Danciu, V.; Baia, L. In Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS, Journal of Physics: Conference Series, IOP Publishing: 2011; p 012059.
39. Tang, H.; Meng, G.; Huang, Q.; Zhang, Z.; Huang, Z.; Zhu, C., Arrays of Cone‐Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface‐Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv. Funct. Mater. 2012, 22 (1), 218-224.
40. Li, R.; Han, C.; Chen, Q.-W., A facile synthesis of multifunctional ZnO/Ag sea urchin-like hybrids as highly sensitive substrates for surface-enhanced Raman detection. RSC Advances 2013, 3 (29), 11715-11722.
41. Wang, Y.; Song, W.; Ruan, W.; Yang, J.; Zhao, B.; Lombardi, J. R., SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag. J. Phys. Chem. C 2009, 113 (19), 8065-8069.
42. Wang, W.; Feng, Z.; Jiang, W.; Zhan, J., Electrospun porous CuO–Ag nanofibers for quantitative sensitive SERS detection. CrystEngComm 2013, 15 (7), 1339-1344.
43. Fleischmann, M.; Hendra, P. J.; McQuillan, A., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
44. Le Ru, E.; Etchegoin, P., Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier: 2008.
45. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem 1977, 84 (1), 1-20.
46. 吳民耀、劉威志, 表面電漿子理論與模擬. 物理雙月刊 2006 年 4 月, 廿八卷二期, 486-496.
47. Lee, P.; Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry 1982, 86 (17), 3391-3395.
48. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. J. Phys.: Condens. Matter 2002, 14 (18), R597.
49. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27 (4), 241-250.
50. Brolo, A. G.; Irish, D. E.; Smith, B. D., Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. J. Mol. Struct. 1997, 405 (1), 29-44.
51. Doering, W. E.; Nie, S., Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 2002, 106 (2), 311-317.
52. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Phys. Chem. 1978, 69 (9), 4159-4161.
53. Haynes, C. L.; McFarland, A. D.; Duyne, R. P. V., Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77 (17), 338 A-346 A.
54. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005, 5 (8), 1569-1574.
55. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78 (9), 1667.
56. Pang, H.; Deng, J.; Yan, B.; Ma, Y.; Li, G.; Ai, Y.; Chen, J.; Zhang, J.; Zheng, H.; Du, J., Cupric Oxide Nanorods on Double-Face Copper Micropuzzles Electrode as Promising Anode Materials for Lithium Ion Batteries. Int. J. Electrochem. Sci 2012, 7, 10735-10747.
57. Poulston, S.; Parlett, P.; Stone, P.; Bowker, M., Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, (24), 811-820.
58. Hong, Z.-s.; Cao, Y.; Deng, J.-f., A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 2002, 52 (1), 34-38.
59. Michael, R. J. V.; Sambandam, B.; Muthukumar, T.; Umapathy, M. J.; Manoharan, P. T., Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis. PCCP 2014, 16 (18), 8541-8555.
60. AkberáAisa, H., A phytoreduction route for selective synthesis of highly stable Ag and Ag: AgCl hybrid nanocolloids. CrystEngComm 2012, 14 (22), 7621-7625.
61. Hsieh, S.; Lin, P.-Y.; Chu, L.-Y., Improved Performance of Solution-Phase Surface-Enhanced Raman Scattering at Ag/CuO Nanocomposite Surfaces. J. Phys. Chem. C 2014, 118 (23), 12500-12505.
62. Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 2007, 111 (37), 13794-13803.
63. Hsieh, C.-W.; Lin, P.-Y.; Hsieh, S., Improved surface-enhanced Raman scattering of insulin fibril templated colloidal gold nanoparticles on silicon. J. Nanophoton. 2012, 6 (1), 063501-1-063501-6.
64. Yu, D.-H.; Yu, X.; Wang, C.; Liu, X.-C.; Xing, Y., Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl. Mater. Interfaces 2012, 4 (5), 2781-2787.
65. Li, M.; Cushing, S. K.; Zhang, J.; Lankford, J.; Aguilar, Z. P.; Ma, D.; Wu, N., Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 2012, 23 (11), 115501.
66. Kunz, K. S.; Luebbers, R. J., The finite difference time domain method for electromagnetics. CRC press: 1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.89.85
論文開放下載的時間是 校外不公開

Your IP address is 3.147.89.85
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code