Responsive image
博碩士論文 etd-0623115-145336 詳細資訊
Title page for etd-0623115-145336
論文名稱
Title
自由基裂解反應一步合成多種放光石墨烯量子點: 應用於溫度感測、細胞顯影以及氧氣還原反應
Radical-Induced Cleavage of Graphene to Multi-Colored Graphene Quantum Dots: Application to Temperature Sensing, Cellular Imaging and Oxygen Reduction Reaction.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
快速合成、氧氣還原反應、細胞顯影、溫度探針、石墨烯量子點
facile synthesis, oxygen reduction reaction, cellular imagine, temperature sensing, graphene quantum dots
統計
Statistics
本論文已被瀏覽 5707 次,被下載 91
The thesis/dissertation has been browsed 5707 times, has been downloaded 91 times.
中文摘要
石墨烯 (Graphene) 由於其具由良好的機械應力、高比表面積、電子傳輸效率以及生物相容性,因此自發現以來一直是廣為研究的題材;而當我們將石墨烯以化學或物理方式將其使尺寸縮小時,會由於量子侷限校應以及邊際效應而使得其性質改變,當其能階被調控到適當範圍時就有可能會釋放出螢光,視為石墨烯量子點 (Graphene Quantum dots) 。而石墨烯量子點除了承襲上述石墨烯的各種優點之外,由於反應時所添加的試劑不同,更有可能在其表面上修飾不同官能基,進而利用其具有螢光特性對於不同目標分析物進行偵測及其他應用。但是在以化學合成方法上,通常需要強酸及高能量的輔助才得以將石墨烯碎裂成量子點,因此,在本篇的研究中皆以較溫和的雙氧水作裂解,並加入不同的反應試劑以參雜不同元素,並將所合成出的石墨烯量子點應用於溫度感測、細胞照影及氧氣還原反應上。
在第一篇研究中,我們以氨水及雙氧水作為反應試劑,可以在反應不同時間後得到分別得到黃色、綠色及藍色的石墨烯量子點。並利用其熱淬息的螢光消光機制對於溫度作為感測,可以得到偵測響應範圍在10℃到100℃之間;接著利用其具有良好的生物相容性的特點,作為細胞顯影試劑並成功的應用在Hela cell上。
而在第二篇研究,延續了以雙氧水作為自由基裂解氧化石墨烯的反應,我們希望能以加入不同的反應試劑後能得到放光波長更接近紅光的石墨烯量子點,以此為前提下,我們找到了含硫的分子:硫脲 (thiourea) ,在雙氧水及硫脲的反應下,可以在短反應時間 (10分鐘) 下得到放光在630 nm的石墨烯量子點。接著亦以此石墨烯量子點作為溫度感測探針,同樣的可以得到良好的響應範圍在10℃到100℃之間。此外,由於此石墨烯量子點參雜了氮及硫這兩種元素,破壞了原本的石墨烯表面,使其產生缺陷進而提高對催化的效率,且由於氮及硫的未鍵結電子對會使得鄰近的碳產生相對正電的情況,亦有利於氧氣的吸附,因此我們將這個石墨烯量子點應用於催化氧氣還原的反應上,與市面上常見的催化材料Pt/C相比,此合成的石墨烯量子點具有不受甲醇干擾而使得效能降低的優點,同時重複測試500次的情況下,其循環伏安圖並沒有產生太大變化,因此可以做為一個非貴金屬的催化性材料,可以大幅降低燃料電池的成本。
Abstract
Since graphene was discovered in 2004, it has been seen as a rising star in many field. Owing to its numerous advantages, such as high conductivity, large surface area and excellent mechanical strength, it drew extensive attentions and made many scientist devoted in its development. Furthermore, when its size comes to nanoscale, the nano-sized graphene, namely, graphene quantum dot (GQD) shows a fluorescent property. This phenomena makes GQD much more fascinating because of these benefits mentioned above.
At first study, we used ammonia and hydrogen peroxide to produced hydroxyl radical, which made it tearing graphene oxide into graphene quantum dots. After characterization of GQD, we speculated a proposed mechanism. By using the thermal quenching of its fluorescence, GQD has been proved as a good fluorescent thermometer at the range between 10℃ and 100℃. Besides, the good biocompatibility of nano-carbon materials makes GQD a promising probe of cellular imagine. Herein, the color of cellular imagines of Hela cell can be regulated as the experiment design due to the broad excitation and emission band of GQD.
The second study will focus on the enhancement of oxygen reduction reaction (ORR) of GQD. It’s commonly accepted that the ORR efficiency is associated with the heteroatom that doped inside carbon materials. With the similar reaction at first study, we used hydrogen peroxide as the source of hydroxyl radical. Besides, as the second reagent, thiourea has been chosen to doping sulfur and nitrogen into GQD. The S,N doped GQD showed a great methanol-tolerance and durability against commercial catalyst, Pt/C. With the financial benefit of carbon material, it would be hopefully decrease the cost of fuel cells.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
摘要 iii
圖目錄 vii
表目錄 viii
縮寫表 ix
第一章、 緒論 1
一、 石墨烯量子點的基本特性 1
二、 石墨烯量子點的合成方式 3
三、 石墨烯量子點的應用 4
第二章、 氨水輔助自由基生成氮參雜石墨烯量子點作為溫度探針及細胞照影 5
一、 前言 5
二、 實驗部分 7
2-1. 實驗藥品 7
2-2. 儀器裝置 9
2-3. 溶液配置 11
2-4. 合成步驟 12
2-5. 細胞養殖與細胞吞噬 13
三、 結果與討論 14
3-1. 合成結果鑑定與反應機制探討 14
3-2. 溫度感測 29
3-3. 細胞顯影 36
3-4. 氧氣還原反應 38
四、 結論 39
第三章、 以硫脲分子增進氮參雜效益並改善石墨烯量子點催化氧氣還原反應 40
一、 前言 40
二、 實驗部分 43
2-1. 實驗藥品 43
2-2. 儀器裝置 45
2-3. 溶液配置 48
三、 結果與討論 51
3-1. 合成結果鑑定與反應機制探討 51
3-2. 溫度感測 61
3-4. 氧氣還原反應 (Oxygen Reduction Reaction,ORR) 64
四、 結論 68
第四章、 參考文獻 69
參考文獻 References
1. Kim, S.; Hwang, S. W.; Kim, M.-K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S.-H.; Ko, G.; Sim, S.; Sone, C.; Choi, H. J.; Bae, S.; Hong, B. H., Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape. ACS Nano 2012, 6 (9), 8203-8208.
2. Zhu, S.; Tang, S.; Zhang, J.; Yang, B., Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 2012, 48 (38), 4527-4539.
3. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K., Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320 (5874), 356-358.
4. Ritter, K. A.; Lyding, J. W., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8 (3), 235-242.
5. Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P., Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol. 2011, 6 (4), 247-252.
6. Klein, D. J., Graphitic polymer strips with edge states. Chem. Phys. Lett. 1994, 217 (3), 261-265.
7. Kohmoto, M.; Hasegawa, Y., Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 2007, 76 (20), 205402.
8. Silva, A. M.; Pires, M. S.; Freire, V. N.; Albuquerque, E. L.; Azevedo, D. L.; Caetano, E. W. S., Graphene Nanoflakes: Thermal Stability, Infrared Signatures, and Potential Applications in the Field of Spintronics and Optical Nanodevices. J. Phys. Chem. C 2010, 114 (41), 17472-17485.
9. Krauss, B.; Nemes-Incze, P.; Skakalova, V.; Biro, L. P.; Klitzing, K. v.; Smet, J. H., Raman Scattering at Pure Graphene Zigzag Edges. Nano Lett. 2010, 10 (11), 4544-4548.
10. Prasad, P. N.; Reinhardt, B. A., Is there a role for organic materials chemistry in nonlinear optics and photonics? Chem. Mater. 1990, 2 (6), 660-669.
11. Osaka, I.; McCullough, R. D., Advances in Molecular Design and Synthesis of Regioregular Polythiophenes. Acc. Chem. Res. 2008, 41 (9), 1202-1214.
12. Sandeep Kumar, G.; Roy, R.; Sen, D.; Ghorai, U. K.; Thapa, R.; Mazumder, N.; Saha, S.; Chattopadhyay, K. K., Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale 2014, 6 (6), 3384-3391.
13. Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S., Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7 (2), 1239-1245.
14. Umrao, S.; Jang, M.-H.; Oh, J.-H.; Kim, G.; Sahoo, S.; Cho, Y.-H.; Srivastva, A.; Oh, I.-K., Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon 2015, 81 (0), 514-524.
15. Liu, R.; Wu, D.; Feng, X.; Müllen, K., Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011, 133 (39), 15221-15223.
16. Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau, S. P., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano 2012, 6 (6), 5102-5110.
17. Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C. P.; Hao, J.; Lin, J.; Jiang, H.; Teng, K. S.; Yang, Z.; Lau, S. P., Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots. ACS Nano 2014, 8 (6), 6312-6320.
18. Wu, X.; Tian, F.; Wang, W.; Chen, J.; Wu, M.; Zhao, J. X., Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C 2013, 1 (31), 4676-4684.
19. Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 2012, 50 (12), 4738-4743.
20. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M., Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12 (2), 844-849.
21. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010, 22 (6), 734-738.
22. Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C.-C.; Ruan, G.; Ceriotti, G.; Raji, A.-R. O.; Martí, A. A.; Tour, J. M., Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4.
23. Gokus, T.; Nair, R. R.; Bonetti, A.; Böhmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A., Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano 2009, 3 (12), 3963-3968.
24. Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.; Fan, X.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M., Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano 2014, 8 (10), 10837-10843.
25. Li, Q.; Zhang, S.; Dai, L.; Li, L.-s., Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134 (46), 18932-18935.
26. Luo, Z.; Yang, D.; Qi, G.; Shang, J.; Yang, H.; Wang, Y.; Yuwen, L.; Yu, T.; Huang, W.; Wang, L., Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction. J. Mater. Chem. A 2014, 2 (48), 20605-20611.
27. Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L., An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv. Mater. 2011, 23 (6), 776-780.
28. Ju, J.; Chen, W., Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens. Bioelectron.
2014, 58 (0), 219-225.
29. Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q., Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensor Actuat. B 2014, 190 (0), 516-522.
30. Dong, Y.; Li, G.; Zhou, N.; Wang, R.; Chi, Y.; Chen, G., Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water. Anal. Chem. 2012, 84 (19), 8378-8382.
31. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., Thermometry at the nanoscale. Nanoscale 2012, 4 (16), 4799-4829.
32. Jaque, D.; Vetrone, F., Luminescence nanothermometry. Nanoscale 2012, 4 (15), 4301-4326.
33. Gao, Y.; Bando, Y., Nanotechnology: Carbon nanothermometer containing gallium. Nature 2002, 415 (6872), 599-599.
34. Suzuki, M.; Tseeb, V.; Oyama, K.; Ishiwata, S. i., Microscopic Detection of Thermogenesis in a Single HeLa Cell. Biophys. J. 2007, 92 (6), L46-L48.

35. Zohar, O.; Ikeda, M.; Shinagawa, H.; Inoue, H.; Nakamura, H.; Elbaum, D.; Alkon, D. L.; Yoshioka, T., Thermal imaging of receptor-activated heat production in single cells. Biophys. J. 1998, 74 (1), 82-89.
36. Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S., Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J. Am. Chem. Soc. 2009, 131 (8), 2766-2767.
37. Stich, M. I. J.; Nagl, S.; Wolfbeis, O. S.; Henne, U.; Schaeferling, M., A Dual Luminescent Sensor Material for Simultaneous Imaging of Pressure and Temperature on Surfaces. Adv. Fun. Mater. 2008, 18 (9), 1399-1406.
38. Ye, F.; Wu, C.; Jin, Y.; Chan, Y.-H.; Zhang, X.; Chiu, D. T., Ratiometric Temperature Sensing with Semiconducting Polymer Dots. J. Am. Chem. Soc. 2011, 133 (21), 8146-8149.
39. Haro-González, P.; Martínez-Maestro, L.; Martín, I. R.; García-Solé, J.; Jaque, D., High-Sensitivity Fluorescence Lifetime Thermal Sensing Based on CdTe Quantum Dots. Small 2012, 8 (17), 2652-2658.
40. Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S., Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705.
41. Feng, J.; Tian, K.; Hu, D.; Wang, S.; Li, S.; Zeng, Y.; Li, Y.; Yang, G., A Triarylboron-Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range. Angew. Chem. Int. Ed. 2011, 50 (35), 8072-8076.
42. Chapman, C. F.; Liu, Y.; Sonek, G. J.; Tromberg, B. J., THE USE OF EXOGENOUS FLUORESCENT PROBES FOR TEMPERATURE MEASUREMENTS IN SINGLE LIVING CELLS. Photochem. Photobio. 1995, 62 (3), 416-425.

43. Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K., Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs. J. Am. Chem. Soc. 2004, 126 (10), 3032-3033.
44. Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41 (9), 3594-3623.
45. Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U., Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew. Chem. Int. Ed. 2013, 52 (42), 11154-11157.
46. Maestro, L. M.; Rodríguez, E. M.; Rodríguez, F. S.; la Cruz, M. C. I.-d.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J. A.; Solé, J. G., CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging. Nano Lett. 2010, 10 (12), 5109-5115.
47. Park, Y.; Koo, C.; Chen, H.-Y.; Han, A.; Son, D. H., Ratiometric temperature imaging using environment-insensitive luminescence of Mn-doped core-shell nanocrystals. Nanoscale 2013, 5 (11), 4944-4950.
48. Zhang, L.; Zhang, M.; Wu, Y., Temperature-induced optical property and conformational change of BSA-protected gold nanoclusters. J. Mol. Struct. 2014, 1069 (0), 245-250.
49. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130 (18), 5856-5857.
50. Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A., Solutions of Negatively Charged Graphene Sheets and Ribbons. J. Am. Chem. Soc. 2008, 130 (47), 15802-15804.

51. Zhang, Z.; Zhang, J.; Chen, N.; Qu, L., Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5 (10), 8869-8890.
52. Shang, J.; Ma, L.; Li, J.; Ai, W.; Yu, T.; Gurzadyan, G. G., The Origin of Fluorescence from Graphene Oxide. Sci. Rep. 2012, 2, 792.
53. Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J., One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J. Mater. Chem. B 2013, 1 (1), 39-42.
54. Zhu, Y.; Wang, G.; Jiang, H.; Chen, L.; Zhang, X., One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase. Chem. Commun. 2015, 51 (5), 948-951.
55. Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P., Energy-level structure of nitrogen-doped graphene quantum dots. J. Mater. Chem. C 2013, 1 (32), 4908-4915.
56. Ferrari, A. C.; Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nano. 2013, 8 (4), 235-246.
57. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys. Rep. 2009, 473 (5–6), 51-87.
58. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191.
59. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
60. Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H., Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances 2012, 2 (10), 4498-4506.
61. Peng, H.; Stich, M. I. J.; Yu, J.; Sun, L.-n.; Fischer, L. H.; Wolfbeis, O. S., Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range. Adv. Mater. 2010, 22 (6), 716-719.
62. Cauzzi, D.; Pattacini, R.; Delferro, M.; Dini, F.; Di Natale, C.; Paolesse, R.; Bonacchi, S.; Montalti, M.; Zaccheroni, N.; Calvaresi, M.; Zerbetto, F.; Prodi, L., Temperature-Dependent Fluorescence of Cu5 Metal Clusters: A Molecular Thermometer. Angew. Chem. Int. Ed. 2012, 51 (38), 9662-9665.
63. Chen, X.; Essner, J. B.; Baker, G. A., Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. Nanoscale 2014, 6 (16), 9594-9598.
64. Yu, P.; Wen, X.; Toh, Y.-R.; Tang, J., Temperature-Dependent Fluorescence in Au10 Nanoclusters. J. Phys. Chem. C 2012, 116 (11), 6567-6571.
65. Zhou, J.; Xia, Z., Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors. RSC Adv. 2014, 4 (86), 46313-46318.
66. Shi, P.; Xia, Z.; Molokeev, M. S.; Atuchin, V. V., Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 2014, 43 (25), 9669-9676.
67. Zhou, J.; Xia, Z.; Yang, M.; Shen, K., High efficiency blue-emitting phosphor: Ce3+-doped Ca5.45Li3.55(SiO4)3O0.45F1.55 for near UV-pumped light-emitting diodes. J. Mater. Chem. 2012, 22 (41), 21935-21941.
68. Xia, Z.; Zhou, J.; Mao, Z., Near UV-pumped green-emitting Na3(Y,Sc)Si3O9:Eu2+ phosphor for white-emitting diodes. J. Mater. Chem. C 2013, 1 (37), 5917-5924.
69. Liu, C.; Xia, Z.; Lian, Z.; Zhou, J.; Yan, Q., Structure and luminescence properties of green-emitting NaBaScSi2O7:Eu2+ phosphors for near-UV-pumped light emitting diodes. J. Mater. Chem. C 2013, 1 (43), 7139-7147.
70. Anoop, G.; Lee, D. W.; Suh, D. W.; Wu, S. L.; Ok, K. M.; Yoo, J. S., Solid-state synthesis, structure, second-harmonic generation, and luminescent properties of noncentrosymmetric BaSi7N10:Eu2+ phosphors. J. Mater. Chem. C 2013, 1 (31), 4705-4712.
71. Yi, H.; Li, F.; Wu, L.; Wu, L.; Wang, H.; Wang, B.; Zhang, Y.; Kong, Y.; Xu, J., Site occupancy and photoluminescence properties of Eu3+-activated Ba2ZnB2O6 phosphor. RSC Adv. 2014, 4 (109), 64244-64251.
72. Zhou, J.; Xia, Z., Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors. J. Mater. Chem. C 2014, 2 (34), 6978-6984.
73. Guo, C.; Liao, W.; Sun, L.; Chen, C., Synthesis of Non-Noble Nitrogen-Containing Catalysts for Cathodic Oxygen Reduction Reaction: A Critical Review. Int. J. Electrochem. Sci. 2015, 10 (3), 2467-2477.
74. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
75. Steele, B. C. H.; Heinzel, A., Materials for fuel-cell technologies. Nature 2001, 414 (6861), 345-352.
76. Paganin, V. A.; Sitta, E.; Iwasita, T.; Vielstich, W., Methanol crossover effect on the cathode potential of a direct PEM fuel cell. J. Appl. Electrochem. 2005, 35 (12), 1239-1243.
77. Baschuk, J. J.; Li, X., Carbon monoxide poisoning of proton exchange membrane fuel cells. Int. J. Energ. Res. 2001, 25 (8), 695-713.
78. Duteanu, N.; Erable, B.; Senthil Kumar, S. M.; Ghangrekar, M. M.; Scott, K., Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Bioresour. Technol. 2010, 101 (14), 5250-5255.
79. Zhao, Y.; Liu, J.; Zhao, Y.; Wang, F., Composition-controlled synthesis of carbon-supported Pt-Co alloy nanoparticles and the origin of their ORR activity enhancement. Phys. Chem. Chem. Phys. 2014, 16 (36), 19298-19306.
80. Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S., Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48 (3), 781-787.
81. Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y., Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite. J. Am. Chem. Soc. 2012, 134 (30), 12326-12329.
82. Wang, C.; Ma, L.; Liao, L.; Bai, S.; Long, R.; Zuo, M.; Xiong, Y., A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Sci. Rep. 2013, 3.
83. Hasche, F.; Oezaslan, M.; Strasser, P., Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. Phys. Chem. Chem. Phys. 2010, 12 (46), 15251-15258.
84. Kim, J.; Lee, S. W.; Carlton, C.; Shao-Horn, Y., Pt-Covered Multiwall Carbon Nanotubes for Oxygen Reduction in Fuel Cell Applications. J. Phys. Chem. Lett. 2011, 2 (11), 1332-1336.
85. Liu, Y.; Wu, P., Graphene Quantum Dot Hybrids as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. ACS Appl. Mater. Inter. 2013, 5 (8), 3362-3369.
86. Palaniselvam, T.; Valappil, M. O.; Illathvalappil, R.; Kurungot, S., Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 2014, 7 (3), 1059-1067.
87. Zhou, X.; Tian, Z.; Li, J.; Ruan, H.; Ma, Y.; Yang, Z.; Qu, Y., Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale 2014, 6 (5), 2603-2607.
88. Kundu, S.; Nagaiah, T. C.; Xia, W.; Wang, Y.; Dommele, S. V.; Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.; Muhler, M., Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. J. Phys. Chem. C 2009, 113 (32), 14302-14310.
89. Rao, C. V.; Cabrera, C. R.; Ishikawa, Y., In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2010, 1 (18), 2622-2627.
90. Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.; Wu, G.; Lee, J.-W.; Popov, B. N., Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Power Sources 2009, 188 (1), 38-44.
91. Niwa, H.; Horiba, K.; Harada, Y.; Oshima, M.; Ikeda, T.; Terakura, K.; Ozaki, J.-i.; Miyata, S., X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J. Power Sources 2009, 187 (1), 93-97.
92. Biddinger, E. J.; Ozkan, U. S., Role of Graphitic Edge Plane Exposure in Carbon Nanostructures for Oxygen Reduction Reaction. J. Phys. Chem. C 2010, 114 (36), 15306-15314.
93. Kim, H.; Lee, K.; Woo, S. I.; Jung, Y., On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 2011, 13 (39), 17505-17510.

94. Zhang, L.; Xia, Z., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C 2011, 115 (22), 11170-11176.
95. Chua, C. K.; Pumera, M., Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano 2015, 9 (4), 4193-4199.
96. Aricò, A. S.; Srinivasan, S.; Antonucci, V., DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells 2001, 1 (2), 133-161.
97. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4 (3), 1321-1326.
98. Li, X.; Lau, S. P.; Tang, L.; Ji, R.; Yang, P., Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale 2014, 6 (10), 5323-5328.
99. Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H., Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(iii) detection. J. Mater. Chem. A 2015, 3 (2), 542-546.
100. Zhou, W.; Peng, K.; Tao, F.-M., Theoretical mechanism for the oxidation of thiourea by hydrogen peroxide in gas state. J. Mol. Struct. 2007, 821 (1–3), 116-124.
101. Gao, Q.; Wang, G.; Sun, Y.; Epstein, I. R., Simultaneous Tracking of Sulfur Species in the Oxidation of Thiourea by Hydrogen Peroxide. J. Phys. Chem. A 2008, 112 (26), 5771-5773.
102. Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H., Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2012, 2 (10), 4498-4506.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code